225 research outputs found
Employment and Hours over the Business Cycle in a Model with Search Frictions
This paper studies a labor market search-matching model with multi-worker firms to investigate how firms utilize the extensive and intensive margins over the business cycle. The earnings function derived from the Stole-Zwiebel bargaining acts as an adjustment cost function for employment and hours. We calibrate the model to match the Japanese labor market, in which the intensive margin accounts for 79% of the variations in total working hours. The model replicates the observed cyclical behavior of hours of work, but fails to generate employment volatility of realistic magnitude. Additional penalties for longer hours of work do not resolve this issue. Wage rigidity and persistent shocks are promising lines of further investigations
Vascular changes in the rat brain during chronic hypoxia in the presence and absence of hypercapnia.
Changes in brain vascularity in adult rats during adaptation to chronic normobaric hypoxia with or without elevated CO(2) were morphometrically investigated. Immunohistochemistry with anti-rat endothelial cell antigen (RECA-1) antibody was carried out for the vascular analysis. After the rats were subjected to hypoxia for 2 to 8 weeks (wks)(10 percent O(2) in N(2)), the total area of blood vessels was measured in 6 brain regions. After 2 wks of hypoxia, the blood vessel area was found to be significantly increased in the frontal cortex, striatum, hippocampus, thalamus, cerebellum, and medulla oblongata, by 44% , 96% , 65% , 50% , 102% and 97% , respectively. The ratio of large vessels with an area > 500 micro m(2) was also increased in all brain regions. Hypoxic adaptation in brain vascularity did not change during 8 wks of hypoxia, and the hypoxia-induced levels measured in the vasculature returned to control levels 2 wks after the termination of hypoxia in areas of the brain other than the cortex and thalamus. In addition, hypoxia-induced changes in terms of the total vascular area and vessel size distribution were significantly inhibited by the elevation in CO(2), whereas chronic hypercapnia without hypoxia had no effect on brain vascularity. These findings suggested that adaptations in brain vascularity in response to hypoxia are rapidly induced, and there are regional differences in the reversibility of such vascular changes. Carbon dioxide is a potent suppressor of hypoxia-induced vascular changes, and may play an important role in vascular remodeling during the process of adaptation to chronic hypoxia.</p
Some problems on Palaeozoic-Mesozoic tectonics inSouthwest Japan: Tectonics of metamorphic belts of high-pressure type
Tectonics of the Sangun belt and Sambagawa belt in Southwest Japan, which belong to the metamorphic belt of high-pressure type, have been discussed in this paper. Regarding the Sangun belt, the tectonics of the phases when the original rocks of the Sangun belt were deposited and the Sangun metamorphic field appeared have been analysed. As for the Sambagawa belt, the tectonics of the phases when the Sambagawa metamorphic field was placed under the condition of the highest temperature and then its collapse began have been analysed
Protein complex prediction via verifying and reconstructing the topology of domain-domain interactions
<p>Abstract</p> <p>Background</p> <p>High-throughput methods for detecting protein-protein interactions enable us to obtain large interaction networks, and also allow us to computationally identify the associations of proteins as protein complexes. Although there are methods to extract protein complexes as sets of proteins from interaction networks, the extracted complexes may include false positives because they do not account for the structural limitations of the proteins and thus do not check that the proteins in the extracted complex can simultaneously bind to each other. In addition, there have been few searches for deeper insights into the protein complexes, such as of the topology of the protein-protein interactions or into the domain-domain interactions that mediate the protein interactions.</p> <p>Results</p> <p>Here, we introduce a combinatorial approach for prediction of protein complexes focusing not only on determining member proteins in complexes but also on the DDI/PPI organization of the complexes. Our method analyzes complex candidates predicted by the existing methods. It searches for optimal combinations of domain-domain interactions in the candidates based on an assumption that the proteins in a candidate can form a true protein complex if each of the domains is used by a single protein interaction. This optimization problem was mathematically formulated and solved using binary integer linear programming. By using publicly available sets of yeast protein-protein interactions and domain-domain interactions, we succeeded in extracting protein complex candidates with an accuracy that is twice the average accuracy of the existing methods, MCL, MCODE, or clustering coefficient. Although the configuring parameters for each algorithm resulted in slightly improved precisions, our method always showed better precision for most values of the parameters.</p> <p>Conclusions</p> <p>Our combinatorial approach can provide better accuracy for prediction of protein complexes and also enables to identify both direct PPIs and DDIs that mediate them in complexes.</p
JAK inhibition ameliorates bone destruction by simultaneously targeting mature osteoclasts and their precursors
Background: Rheumatoid arthritis (RA) is characterized by chronic inflammation and resultant cartilage/bone destruction because of aberrantly activated osteoclasts. Recently, novel treatments with several Janus kinase (JAK) inhibitors have been shown to successfully ameliorate arthritis-related inflammation and bone erosion, although their mechanisms of action for limiting bone destruction remain unclear. Here, we examined the effects of a JAK inhibitor on mature osteoclasts and their precursors by intravital multiphoton imaging. Methods: Inflammatory bone destruction was induced by local injection of lipopolysaccharides into transgenic mice carrying reporters for mature osteoclasts or their precursors. Mice were treated with the JAK inhibitor, ABT-317, which selectively inhibits the activation of JAK1, and then subjected to intravital imaging with multiphoton microscopy. We also used RNA sequencing (RNA-Seq) analysis to investigate the molecular mechanism underlying the effects of the JAK inhibitor on osteoclasts. Results: The JAK inhibitor, ABT-317, suppressed bone resorption by blocking the function of mature osteoclasts and by targeting the migratory behaviors of osteoclast precursors to the bone surface. Further exhaustive RNA-Seq analysis demonstrated that Ccr1 expression on osteoclast precursors was suppressed in the JAK inhibitor-treated mice; the CCR1 antagonist, J-113863, altered the migratory behaviors of osteoclast precursors, which led to the inhibition of bone destruction under inflammatory conditions. Conclusions: This is the first study to determine the pharmacological actions by which a JAK inhibitor blocks bone destruction under inflammatory conditions; this inhibition is beneficial because of its dual effects on both mature osteoclasts and immature osteoclast precursors.Yari S., Kikuta J., Shigyo H., et al. JAK inhibition ameliorates bone destruction by simultaneously targeting mature osteoclasts and their precursors. Inflammation and Regeneration 43, 18 (2023); https://doi.org/10.1186/s41232-023-00268-4
Reconstruction of a high-resolution image on a compound-eye image-capturing system
This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/AO.43.001719 Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law
- …