86 research outputs found

    A Framework for Universally Composable Non-Committing Blind Signatures

    Get PDF
    A universally composable (UC) blind signature functionality requres users to commit to the message to be blindly signed. It is thereby impossible to realize in the plain model. This paper shows that even non-committing variants of UC blind signature functionality can not be realized in the plain model. We characterize UC non-committing blind signatures in the common reference string model by presenting equivalent stand-alone security notions under static corruption. Usefulness of the characterization is demonstrated by showing that Fischlin\u27s basic stand-alone blind signature scheme can be transformed into a UC non-committing blind signature protocol without using extra cryptographic components. We extend the results to the adaptive corruption model and present analogous notions, theorems, and constructions both in the erasure model and the non-erasure model

    Black-Box Language Extension of Non-Interactive Zero-Knowledge Arguments

    Get PDF
    Highly efficient non-interactive zero-knowledge arguments (NIZK) are often constructed for limited languages and it is not known how to extend them to cover wider classes of languages in general. In this paper we initiate a study on black-box language extensions for conjunctive and disjunctive relations, that is, building a NIZK system for LL^{\cal L} \diamond \hat{{\cal L}} (with {,}\diamond \in \{\land, \lor\}) based on NIZK systems for languages L{\cal L} and L^\hat{{\cal L}}. While the conjunctive extension of NIZKs is straightforward by simply executing the given NIZKs in parallel, it is not known how disjunctive extensions could be achieved in a black-box manner. Besides, observe that the simple conjunctive extension does not work in the case of simulation-sound NIZKs (SS-NIZKs), as pointed out by Sahai (Sahai, FOCS 1999). Our main contribution is an impossibility result that negates the existence of the above extensions and implies other non-trivial separations among NIZKs, SS-NIZKs, and labelled SS-NIZKs. Motivated by the difficulty of such transformations, we additionally present an efficient construction of signature schemes based on unbounded simulation-sound NIZKs (USS-NIZKs) for any language without language extensions

    Signing on Elements in Bilinear Groups for Modular Protocol Design

    Get PDF
    A signature scheme is called structure-preserving if its verification keys, messages, and signatures are group elements and the verification predicate is a conjunction of pairing product equations. We answer to the open problem of constructing a constant-size structure-preserving signature scheme. The security is proven in the standard model based on a novel non-interactive assumption that can be justified and has an optimal bound in the generic bilinear group model. We also present efficient structure-preserving signature schemes with advanced properties including signing unbounded number of group elements, allowing simulation in the common reference string model, signing messages from mixed groups in the asymmetric bilinear group setting, and strong unforgeability. Among many applications, we show two examples; an adaptively secure round optimal blind signature scheme and a group signature scheme with efficient concurrent join. As a bi-product, several homomorphic trapdoor commitment schemes and one-time signature schemes are presented, too. In combination with the Groth-Sahai non-interactive proof system, these schemes contribute to give efficient instantiations to modular constructions of cryptographic protocols

    Design in Type-I, Run in Type-III: Fast and Scalable Bilinear-Type Conversion using Integer Programming

    Get PDF
    Bilinear-type conversion is to convert cryptographic schemes designed over symmetric groups instantiated with imperilled curves into ones that run over more secure and efficient asymmetric groups. In this paper we introduce a novel type conversion method called {\em IPConv} using 0-1 Integer Programming. Instantiated with a widely available IP solver, it instantly converts existing intricate schemes, and can process large-scale schemes that involves more than a thousand variables and hundreds of pairings. Such a quick and scalable method allows a new approach in designing cryptographic schemes over asymmetric bilinear groups. Namely, designers work without taking much care about asymmetry of computation but the converted scheme runs well in the asymmetric setting. We demonstrate the usefulness of conversion-aided design by presenting somewhat counter-intuitive examples where converted DLIN-based Groth-Sahai proofs are more compact than manually built SXDH-based proofs

    Activation of ADF/cofilin by phosphorylation-regulated Slingshot phosphatase is required for the meiotic spindle assembly in Xenopus laevis oocytes

    Get PDF
    We identify Xenopus ADF/cofilin (XAC) and its activator, Slingshot phosphatase (XSSH), as key regulators of actin dynamics essential for spindle microtubule assembly during Xenopus oocyte maturation. Phosphorylation of XSSH at multiple sites within the tail domain occurs just after germinal vesicle breakdown (GVBD) and is accompanied by dephosphorylation of XAC, which was mostly phosphorylated in immature oocytes. This XAC dephosphorylation after GVBD is completely suppressed by latrunculin B, an actin monomer-sequestering drug. On the other hand, jasplakinolide, an F-actin-stabilizing drug, induces dephosphorylation of XAC. Effects of latrunculin B and jasplakinolide are reconstituted in cytostatic factor-arrested extracts (CSF extracts), and XAC dephosphorylation is abolished by depletion of XSSH from CSF extracts, suggesting that XSSH functions as an actin filament sensor to facilitate actin filament dynamics via XAC activation. Injection of anti-XSSH antibody, which blocks full phosphorylation of XSSH after GVBD, inhibits both meiotic spindle formation and XAC dephosphorylation. Coinjection of constitutively active XAC with the antibody suppresses this phenotype. Treatment of oocytes with jasplakinolide also impairs spindle formation. These results strongly suggest that elevation of actin dynamics by XAC activation through XSSH phosphorylation is required for meiotic spindle assembly in Xenopus laevis

    Fully Structure-Preserving Signatures and Shrinking Commitments

    Get PDF
    Structure-preserving signatures are schemes in which public keys, messages, and signatures are all collections of source group elements of some bilinear groups. In this paper, we introduce fully structure-preserving signature schemes, with the additional requirement that even secret keys should be group elements. This new type of structure-preserving signatures allows for efficient non-interactive proofs of knowledge of the secret key and is useful in designing cryptographic protocols with strong security guarantees based on the simulation paradigm where the simulator has to extract the secret keys on-line. To gain efficiency, we construct shrinking structure-preserving trapdoor commitments. This is by itself an important primitive and of independent interest as it appears to contradict a known impossibility result. We argue that a relaxed binding property lets us circumvent the impossibility result while still retaining the usefulness of the primitive in important applications as mentioned above

    Tagged One-Time Signatures: Tight Security and Optimal Tag Size

    Get PDF
    We present an efficient structure-preserving tagged one-time signature scheme with tight security reductions to the decision-linear assumption. Our scheme features short tags consisting of a single group element and gives rise to the currently most efficient structure-preserving signature scheme based on the decision-liner assumption with constant-size signatures of only 14 group elements, where the record-so-far was 17 elements. To demonstrate the advantages of our scheme, we revisit the work by Hofheinz and Jager (CRYPTO 2012) and present the currently most efficient tightly secure public-key encryption scheme. We also obtain the first structure-preserving public-key encryption scheme featuring both tight security and public verifiability

    Elevated Levels of Serum Pentosidine Are Associated with Dropped Head Syndrome in Older Women

    Get PDF
    Study Design A retrospective observational study was performed. Purpose We investigated the prevalence of sarcopenia in dropped head syndrome (DHS), and the relationship between biochemical markers, including major advanced glycation end products (AGEs), pentosidine, and DHS in older women. Overview of Literature AGEs have been implicated in the pathogenesis of sarcopenia. Methods We studied 13 elderly women with idiopathic DHS (mean age, 77.2 years) and 20 healthy volunteers (mean age, 74.8 years). We used a bioelectrical impedance analyzer to analyze body composition, including appendicular skeletal muscle mass index (SMI; appendicular lean mass [kg]/[height (m)]2). Cervical sagittal plane alignment, including C2–C7 sagittal vertical axis (C2–C7SVA), C2–C7 angle, and C2 slope (C2S), was measured. Biochemical markers, such as serum and urinary pentosidine, serum homocysteine, 1, 25-dihydroxyvitamin D, and 25-hydroxyvitamin D, were measured. The level of each variable was compared between DHS and controls. The relationship between biochemical markers and DHS was examined. Results Sarcopenia (SMI <5.75) was observed at a high prevalence in participants with DHS (77% compared to 22% of healthy controls). Height, weight, femoral bone mineral density, appendicular lean mass, total lean mass, and SMI all had significantly lower values in the DHS group. Serum and urinary pentosidine, and serum homocysteine were significantly higher in the DHS group compared to controls. Analysis of cervical alignment revealed a significant positive correlation of serum pentosidine with C2–C7SVA and C2S. Conclusions Sarcopenia was involved in DHS, and high serum pentosidine levels are associated with severity of DHS in older women
    corecore