72 research outputs found

    Neuroprotective response after photodynamic therapy: Role of vascular endothelial growth factor

    Get PDF
    Background: Anti-vascular endothelial growth factor (VEGF) drugs and/or photodynamic therapy (PDT) constitute current treatments targeting pathological vascular tissues in tumors and age-related macular degeneration. Concern that PDT might induce VEGF and exacerbate the disease has led us to current practice of using anti-VEGF drugs with PDT simultaneously. However, the underlying molecular mechanisms of these therapies are not well understood. Methods: We assessed VEGF levels after PDT of normal mouse retinal tissue, using a laser duration that did not cause obvious tissue damage. To determine the role of PDT-induced VEGF and its downstream signaling, we intravitreally injected a VEGF inhibitor, VEGFR1 Fc, or a PI3K/Akt inhibitor, LY294002, immediately after PDT. Then, histological and biochemical changes of the retinal tissue were analyzed by immunohistochemistry and immunoblot analyses, respectively. Results: At both the mRNA and protein levels, VEGF was upregulated immediately and transiently after PDT. VEGF suppression after PDT resulted in apoptotic destruction of the photoreceptor cell layer in only the irradiated area during PDT. Under these conditions, activation of the anti-apoptotic molecule Akt was suppressed in the irradiated area, and levels of the pro-apoptotic protein BAX were increased. Intravitreal injection of a PI3K/Akt inhibitor immediately after PDT increased BAX levels and photoreceptor cell apoptosis. Conclusion: Cytotoxic stress caused by PDT, at levels that do not cause overt tissue damage, induces VEGF and activates Akt to rescue the neural tissue, suppressing BAX. Thus, the immediate and transient induction of VEGF after PDT is neuroprotective

    Circadian Disruption Accelerates Tumor Growth and Angio/Stromagenesis through a Wnt Signaling Pathway

    Get PDF
    Epidemiologic studies show a high incidence of cancer in shift workers, suggesting a possible relationship between circadian rhythms and tumorigenesis. However, the precise molecular mechanism played by circadian rhythms in tumor progression is not known. To identify the possible mechanisms underlying tumor progression related to circadian rhythms, we set up nude mouse xenograft models. HeLa cells were injected in nude mice and nude mice were moved to two different cases, one case is exposed to a 24-hour light cycle (L/L), the other is a more “normal” 12-hour light/dark cycle (L/D). We found a significant increase in tumor volume in the L/L group compared with the L/D group. In addition, tumor microvessels and stroma were strongly increased in L/L mice. Although there was a hypervascularization in L/L tumors, there was no associated increase in the production of vascular endothelial cell growth factor (VEGF). DNA microarray analysis showed enhanced expression of WNT10A, and our subsequent study revealed that WNT10A stimulates the growth of both microvascular endothelial cells and fibroblasts in tumors from light-stressed mice, along with marked increases in angio/stromagenesis. Only the tumor stroma stained positive for WNT10A and WNT10A is also highly expressed in keloid dermal fibroblasts but not in normal dermal fibroblasts indicated that WNT10A may be a novel angio/stromagenic growth factor. These findings suggest that circadian disruption induces the progression of malignant tumors via a Wnt signaling pathway

    Near-infrared light control of membrane potential by an electron donor-acceptor linked molecule

    Get PDF
    Near-infrared (NIR) light control of living cellular activities is a highly desired technique for living cell manipulation because of its advantage of high penetrability towards living tissue. In this study, (pi-extended porphyrin)-fullerene linked molecules are designed and synthesized to achieve NIR light control of the membrane potential. A donor-(pi-extended porphyrin)-acceptor linked molecule exhibited the formation of the charge-separated state with a relatively long lifetime (0.68 mu s) and a moderate quantum yield (27-31%). The hydrophilic trimethylammonium-linked triad molecule successfully altered PC12 cells' membrane potential via photoinduced intramolecular charge separation

    Hyperinsulinemia, glucose intolerance, and dyslipidemia induced by acute inhibition of phosphoinositide 3-kinase signaling in the liver

    No full text
    The physiological relevance of phosphoinositide 3-kinase (PI 3-K) signaling in the liver to fuel homeostasis was investigated. Systemic infusion of an adenovirus encoding a dominant negative mutant of PI 3-K (Δp85) resulted in liver-specific expression of this protein and in inhibition of the insulin-induced activation of PI 3-K in the liver within 3 days, without affecting insulin signaling in skeletal muscle. Hepatic expression of Δp85 led to hyperinsulinemia and to a marked increase in blood glucose concentration in response to oral glucose intake. The increases in both glycogen and glucose 6-phosphate content, as well as in Akt and glycogen synthase activities in the liver, that were induced by glucose intake were markedly impaired in mice expressing Δp85. Despite an upregulation of mRNAs for gluconeogenic enzymes apparent in the liver of these animals, the fasting blood glucose concentration was increased only slightly, and the serum concentrations of gluconeogenic precursors were reduced. However, administration of pyruvate, a substrate for gluconeogenesis, resulted in an exaggerated increase in blood glucose concentration. In the fasted state, the mass of adipose tissue of the mice was about 1.5 times that in control mice. The mice also exhibited marked decreases in the serum concentrations of FFAs and triglyceride and suppression of insulin-induced PI 3-K activation in adipose tissue, probably due to the associated hyperinsulinemia. PI 3-K activity in the liver is thus essential for normal carbohydrate and lipid metabolism in living animals

    Preparation and Properties of Mn-Ga Amorphous Films by ICB Method

    No full text
    Mn-Ga amorphous films were prepared using the ICB method in order to investigate the film characters and the magnetic and electrical properties. It was confirmed that the film quality is controlled by changing the acceleration voltage of ionized clusters and the ionization current. The mask on the substrate produced a very sharply edged film of which adhesion to the substrate was excellent. The temperature dependence of magnetization of Mn-60% Ga amorphous film exhibited a hysteresis by magnetic annealing, resulting in a spin glass behavior. The electrical resistivity ρ of the amorphous film showed a negative temperature dependenceand ρ vs √T plot set a linear relationship in a wide temperature range

    Optical control of neuronal firing: Via photoinduced electron transfer in donor-acceptor conjugates

    Get PDF
    A series of porphyrin-fullerene linked molecules has been synthesized to evaluate the effects of substituents and molecular structures on their charge-separation yield and the lifetime of a final charge-separated state in various hydrophilic environments. The selected high-performance molecule effectively achieved depolarization in a plasma cell membrane by visible light as well as two-photon excitation using a near-infrared light laser. Moreover, it was revealed that the depolarization can trigger neuronal firing in rat hippocampal neurons, demonstrating the potential and versatility for controlling cell functions using light
    corecore