29 research outputs found

    Induction of Expandable Tissue-Specific Progenitor Cells from Human Pancreatic Tissue through Transient Expression of Defined Factors

    Get PDF
    We recently demonstrated the generation of mouse induced tissue-specific stem (iTS) cells through transient overexpression of reprogramming factors combined with tissue-specific selection. Here we induced expandable tissue-specific progenitor (iTP) cells from human pancreatic tissue through transient expression of genes encoding the reprogramming factors OCT4 (octamer-binding transcription factor 4), p53 small hairpin RNA (shRNA), SOX2 (sex-determining region Y-box 2), KLF4 (Kruppel-like factor 4), L-MYC, and LIN28. Transfection of episomal plasmid vectors into human pancreatic tissue efficiently generated iTP cells expressing genetic markers of endoderm and pancreatic progenitors. The iTP cells differentiated into insulin-producing cells more efficiently than human induced pluripotent stem cells (iPSCs). iTP cells continued to proliferate faster than pancreatic tissue cells until days 100–120 (passages 15–20). iTP cells subcutaneously inoculated into immunodeficient mice did not form teratomas. Genomic bisulfite nucleotide sequence analysis demonstrated that the OCT4 and NANOG promoters remained partially methylated in iTP cells. We compared the global gene expression profiles of iPSCs, iTP cells, and pancreatic cells (islets >80%). Microarray analyses revealed that the gene expression profiles of iTP cells were similar, but not identical, to those of iPSCs but different from those of pancreatic cells. The generation of human iTP cells may have important implications for the clinical application of stem/progenitor cells

    Induced Tissue-Specific Stem Cells and Epigenetic Memory in Induced Pluripotent Stem Cells

    No full text
    Induced pluripotent stem (iPS) cells have significant implications for overcoming most of the ethical issues associated with embryonic stem (ES) cells. The pattern of expressed genes, DNA methylation, and covalent histone modifications in iPS cells are very similar to those in ES cells. However, it has recently been shown that, following the reprogramming of mouse/human iPS cells, epigenetic memory is inherited from the parental cells. These findings suggest that the phenotype of iPS cells may be influenced by their cells of origin and that their skewed differentiation potential may prove useful in the generation of differentiated cell types that are currently difficult to produce from ES/iPS cells for the treatment of human diseases. Our recent study demonstrated the generation of induced tissue-specific stem (iTS) cells by transient overexpression of the reprogramming factors combined with tissue-specific selection. iTS cells are cells that inherit numerous components of epigenetic memory from donor tissue and acquire self-renewal potential. This review describes the “epigenetic memory” phenomenon in iPS and iTS cells and the possible clinical applications of these stem cells

    Gene Expression in Pancreatic Cancer-Like Cells and Induced Pancreatic Stem Cells Generated by Transient Overexpression of Reprogramming Factors

    No full text
    We previously reported that transient overexpression of reprogramming factors can be used to generate induced pluripotent stem (iPS) cells, induced tissue-specific stem (iTS) cells, and fibroblast-like (iF) cells from pancreatic tissue. iF cells have tumorigenic ability and behave similarly to pancreatic cancer cells. In this study, we analyzed gene expression in iF cells and iTS-P cells (iTS cells from pancreatic tissue) via microarray analysis and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The expression levels of the Mybl2 and Lyn genes, which are reported to be oncogenes, were significantly higher in iF cells than in iTS-P cells. The expression level of Nestin, which is expressed in not only pancreatic progenitor cells but also pancreatic ductal adenocarcinomas, was also higher in iF cells than in iTS-P cells. Itgb6 and Fgf13, which are involved in the pathogenesis of diseases such as cancer, exhibited higher expression levels in iF cells than in iTS-P cells. Unexpectedly, the expression levels of genes related to epithelial-mesenchymal transition (EMT), except Bmp4, were lower in iF cells than in iTS-P cells. These data suggest that the Mybl2, Lyn, Nestin, Itgb6, and Fgf13 genes could be important biomarkers to distinguish iTS-P cells from iF cells

    Mutations in the C1 element of the insulin promoter lead to diabetic phenotypes in homozygous mice

    Get PDF
    Genome editing technologies such as CRISPR–Cas9 are widely used to establish causal associations between mutations and phenotypes. However, CRISPR–Cas9 is rarely used to analyze promoter regions. The insulin promoter region (approximately 1,000 bp) directs β cell-specific expression of insulin, which in vitro studies show is regulated by ubiquitous, as well as pancreatic, β cell-specific transcription factors. However, we are unaware of any confirmatory in vivo studies. Here, we used CRISPR–Cas9 technology to generate mice with mutations in the promoter regions of the insulin I (Ins1) and II (Ins2) genes. We generated 4 homozygous diabetic mice with 2 distinct mutations in the highly conserved C1 elements in each of the Ins1 and Ins2 promoters (3 deletions and 1 replacement in total). Remarkably, all mice with homozygous or heterozygous mutations in other loci were not diabetic. Thus, the C1 element in mice is required for Ins transcription in vivo

    Gene Expression in Pancreatic Cancer-Like Cells and Induced Pancreatic Stem Cells Generated by Transient Overexpression of Reprogramming Factors

    No full text
    We previously reported that transient overexpression of reprogramming factors can be used to generate induced pluripotent stem (iPS) cells, induced tissue-specific stem (iTS) cells, and fibroblast-like (iF) cells from pancreatic tissue. iF cells have tumorigenic ability and behave similarly to pancreatic cancer cells. In this study, we analyzed gene expression in iF cells and iTS-P cells (iTS cells from pancreatic tissue) via microarray analysis and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The expression levels of the Mybl2 and Lyn genes, which are reported to be oncogenes, were significantly higher in iF cells than in iTS-P cells. The expression level of Nestin, which is expressed in not only pancreatic progenitor cells but also pancreatic ductal adenocarcinomas, was also higher in iF cells than in iTS-P cells. Itgb6 and Fgf13, which are involved in the pathogenesis of diseases such as cancer, exhibited higher expression levels in iF cells than in iTS-P cells. Unexpectedly, the expression levels of genes related to epithelial-mesenchymal transition (EMT), except Bmp4, were lower in iF cells than in iTS-P cells. These data suggest that the Mybl2, Lyn, Nestin, Itgb6, and Fgf13 genes could be important biomarkers to distinguish iTS-P cells from iF cells

    Assessment of Mycobacterial Interspersed Repetitive Unit-QUB Markers To Further Discriminate the Beijing Genotype in a Population-Based Study of the Genetic Diversity of Mycobacterium tuberculosis Clinical Isolates from Okinawa, Ryukyu Islands, Japan▿ †

    No full text
    The present investigation focused on genetic diversity and drug resistance of 101 Mycobacterium tuberculosis strains isolated between July 2003 and February 2005 in the Okinawa prefecture, Ryukyu Islands, Japan. A high rate of clustering (87%, eight clusters, 2 to 69 strains/cluster) was observed upon spoligotyping; most of it was due to the lower discriminatory power of this method for the Beijing lineage (n = 72; 71.3% of the isolates). The remaining diversity was limited to seven clusters (two to five isolates/cluster), with the following distribution of major lineages: ill-defined T (n = 13; 12.8%), ancestral East African-Indian (n = 6; 5.9%), Haarlem (n = 4; 4%), Latin American-Mediterranean (n = 2; 2%), X1 (n = 1; 1%), and a total absence of the central Asian clade. Three remaining strains could not be classified on the basis of their spoligotype pattern and were labeled “unknown.” Subtyping with mycobacterial interspersed repetitive units (MIRUs) in association with additional QUB minisatellites was performed to discriminate among the Beijing strains. Based on an “in-house” spoligotyping/MIRU database (n = 694 Beijing strains), eight highly discriminative MIRU loci for Beijing strains were selected (loci numbered 10, 16, 23, 26, 27, 31, 39, and 40). The highest discriminatory power (h) observed in our sample (n = 72; M-26, 0.385; M-10, 0.38; M-31, 0.255; M-16, 0.238) was too low, and 73.6% of the Beijing strains from Okinawa remained clustered. Typing of Beijing strains with additional QUB loci (with the exception of “one-copy” QUB-1451) resulted in higher discriminatory powers: QUB-11b, 0.68; QUB-11a, 0.656; QUB-26, 0.644; QUB-18, 0.553; QUB-4156, 0.5; and QUB-1895, 0.453. A definitive algorithm on the use of QUB markers to subtype Beijing isolates in expanded studies would shed light on their hypervariability, which may sometimes blur recognition between epidemiologically linked Beijing isolates. The total absence of multiple drug resistance among Beijing isolates from Okinawa, as well as the relatively older ages of the patients (majority above 60 years), shows that tuberculosis (TB) is a declining disease in Okinawa, and an adequate TB control program has successfully avoided both the emergence and the spread of multidrug-resistant TB in this insular setting

    Induction of Expandable Adipose-Derived Mesenchymal Stem Cells from Aged Mesenchymal Stem Cells by a Synthetic Self-Replicating RNA

    No full text
    Adipose-derived mesenchymal stem cells (ADSCs) have attracted attention due to their potential for use in the treatment of various diseases. However, the self-renewal capacity of ADSCs is restricted and their function diminishes during passage. We previously generated induced tissue-specific stem cells from mouse pancreatic cells using a single synthetic self-replicating Venezuelan Equine Encephalitis (VEE)-reprogramming factor (RF) RNA replicon (SR-RNA) expressing the reprogramming factors POU class 5 homeobox 1 (OCT4), Krueppel-like factor 4 (KLF4), Sex determining region Y-box 2 (SOX2), and Glis Family Zinc Finger 1 (GLIS1). This vector was used to generate induced pluripotent stem (iPS) cells. Here, we applied this SR-RNA vector to generate human iTS cells from aged mesenchymal stem cells (hiTS-M cells) deficient in self-renewal that were derived from adipose tissue. These hiTS-M cells transfected with the SR-RNA vector survived for 15 passages. The hiTS-M cells expressed cell surface markers similar to those of human adipose-derived mesenchymal stem cells (hADSCs) and differentiated into fat cells and osteoblasts. Global gene expression profiling showed that hiTS-M cells were transcriptionally similar to hADSCs. These data suggest that the generation of iTS cells has important implications for the clinical application of autologous stem cell transplantation
    corecore