1,066 research outputs found

    Calculation Of Pressure Rise And Energy Of Hot Gases Due To High Energy Arcing Faults In The Metal-clad Switchgear

    Get PDF
    This paper presents the 3-D CFD calculation results of the pressure rise due to the High Energy Arcing Faults (HEAFs) in the metal-clad switchgears. The calculations were performed considering the came-off of the roof panel that was observed in the arc tests. The calculated pressure development approximately agreed with the measured one. Furthermore, the energy of hot gases exhausted from the broken roof panel was calculated to investigate the thermal effect of hot gases

    Presence of a chiral soliton lattice in the chiral helimagnet MnTa3S6

    Get PDF
    Chiral helimagnetism was investigated in transition-metal intercalated dichalcogenide single crystals of MnTa3S6. Small-angle neutron scattering (SANS) experiments revealed the presence of harmonic chiral helimagnetic order, which was successfully detected as a pair of satellite peaks in the SANS pattern. The magnetization data are also supportive of the presence of chiral soliton lattice (CSL) phase in MnTa3S6. The observed features are summarized in the phase diagram of MnTa3S6, which is in strong contrast with that observed in other dichalcogenides such as CrNb3S6 and CrTa3S6. The presence of the remanent state provides tunable capability of the number of chiral solitons at zero magnetic field in the CSL system, which may be useful for memory device applications

    Presence of a chiral soliton lattice in the chiral helimagnet MnTa3_{3}S6_{6}

    Full text link
    Chiral helimagnetism was investigated in transition-metal intercalated dichalcogenide single crystals of MnTa3_3S6_6. Small-angle neutron scattering (SANS) experiments revealed the presence of harmonic chiral helimagnetic order, which was successfully detected as a pair of satellite peaks in the SANS pattern. The magnetization data are also supportive of the presence of chiral soliton lattice (CSL) phase in MnTa3_3S6_6. The observed features are summarized in the phase diagram of MnTa3_3S6_6, which is in strong contrast with that observed in other dichalcogenides such as CrNb3_3S6_6 and CrTa3_3S6_6. The presence of the remanent state provides tunable capability of the number of chiral solitons at zero magnetic field in the CSL system, which may be useful for memory device applications.Comment: 6 pages, 6 figure

    Analytical investigation of magnetic field distributions around superconducting strips on ferromagnetic substrates

    Full text link
    The complex-field approach is developed to derive analytical expressions of the magnetic field distributions around superconducting strips on ferromagnetic substrates (SC/FM strips). We consider the ferromagnetic substrates as ideal soft magnets with an infinite magnetic permeability, neglecting the ferromagnetic hysteresis. On the basis of the critical state model for a superconducting strip, the ac susceptibility χ1+iχ1\chi_1'+i\chi_1'' of a SC/FM strip exposed to a perpendicular ac magnetic field is theoretically investigated, and the results are compared with those for superconducting strips on nonmagnetic substrates (SC/NM strips). The real part χ1\chi_1' for H0/jcds0H_0/j_cd_s\to 0 (where H0H_0 is the amplitude of the ac magnetic field, jcj_c is the critical current density, and dsd_s is the thickness of the superconducting strip) of a SC/FM strip is 3/4 of that of a SC/NM strip. The imaginary part χ1\chi_1'' (or ac loss QQ) for H0/jcds<0.14H_0/j_cd_s<0.14 of a SC/FM strip is larger than that of a SC/NM strip, even when the ferromagnetic hysteresis is neglected, and this enhancement of χ1\chi_1'' (or QQ) is due to the edge effect of the ferromagnetic substrate.Comment: 8 pages, 6 figures, submitted to Phys. Rev.

    Biomechanical Simulation of Electrode Migration for Deep Brain Stimulation

    Get PDF
    International audienceDeep Brain Stimulation is a modern surgical technique for treating patients who suffer from affective or motion disorders such as Parkinson's disease. The efficiency of the procedure relies heavily on the accuracy of the placement of a micro-electrode which sends electrical pulses to a specific part of the brain that controls motion and affective symptoms. However, targeting this small anatomical structure is rendered difficult due to a series of brain shifts that take place during and after the procedure. This paper introduces a biomechanical simulation of the intra and postoperative stages of the procedure in order to determine lead deformation and electrode migration due to brain shift. To achieve this goal, we propose a global approach, which accounts for brain deformation but also for the numerous interactions that take place during the procedure (contacts between the brain and the inner part of the skull and falx cerebri, effect of the cerebro-spinal fluid, and biomechanical interactions between the brain and the electrodes and cannula used during the procedure). Preliminary results show a good correlation between our simulations and various results reported in the literature
    corecore