2,694 research outputs found

    Finite type modules and Bethe Ansatz for quantum toroidal gl(1)

    Get PDF
    We study highest weight representations of the Borel subalgebra of the quantum toroidal gl(1) algebra with finite-dimensional weight spaces. In particular, we develop the q-character theory for such modules. We introduce and study the subcategory of `finite type' modules. By definition, a module over the Borel subalgebra is finite type if the Cartan like current \psi^+(z) has a finite number of eigenvalues, even though the module itself can be infinite dimensional. We use our results to diagonalize the transfer matrix T_{V,W}(u;p) analogous to those of the six vertex model. In our setting T_{V,W}(u;p) acts in a tensor product W of Fock spaces and V is a highest weight module over the Borel subalgebra of quantum toroidal gl(1) with finite-dimensional weight spaces. Namely we show that for a special choice of finite type modules VV the corresponding transfer matrices, Q(u;p) and T(u;p), are polynomials in u and satisfy a two-term TQ relation. We use this relation to prove the Bethe Ansatz equation for the zeroes of the eigenvalues of Q(u;p). Then we show that the eigenvalues of T_{V,W}(u;p) are given by an appropriate substitution of eigenvalues of Q(u;p) into the q-character of V.Comment: Latex 42 page

    Form factors and action of U_{\sqrt{-1}}(sl_2~) on infinite-cycles

    Full text link
    Let p={Pn,l}n,l∈Zβ‰₯0nβˆ’2l=m{\bf p}=\{P_{n,l}\}_{n,l\in\Z_{\ge 0}\atop n-2l=m} be a sequence of skew-symmetric polynomials in X1,...,XlX_1,...,X_l satisfying deg⁑XjPn,l≀nβˆ’1\deg_{X_j}P_{n,l}\le n-1, whose coefficients are symmetric Laurent polynomials in z1,...,znz_1,...,z_n. We call p{\bf p} an ∞\infty-cycle if Pn+2,l+1∣Xl+1=zβˆ’1,znβˆ’1=z,zn=βˆ’z=zβˆ’nβˆ’1∏a=1l(1βˆ’Xa2z2)β‹…Pn,lP_{n+2,l+1}\bigl|_{X_{l+1}=z^{-1},z_{n-1}=z,z_n=-z} =z^{-n-1}\prod_{a=1}^l(1-X_a^2z^2)\cdot P_{n,l} holds for all n,ln,l. These objects arise in integral representations for form factors of massive integrable field theory, i.e., the SU(2)-invariant Thirring model and the sine-Gordon model. The variables Ξ±a=βˆ’log⁑Xa\alpha_a=-\log X_a are the integration variables and Ξ²j=log⁑zj\beta_j=\log z_j are the rapidity variables. To each ∞\infty-cycle there corresponds a form factor of the above models. Conjecturally all form-factors are obtained from the ∞\infty-cycles. In this paper, we define an action of Uβˆ’1(sl~2)U_{\sqrt{-1}}(\widetilde{\mathfrak{sl}}_2) on the space of ∞\infty-cycles. There are two sectors of ∞\infty-cycles depending on whether nn is even or odd. Using this action, we show that the character of the space of even (resp. odd) ∞\infty-cycles which are polynomials in z1,...,znz_1,...,z_n is equal to the level (βˆ’1)(-1) irreducible character of sl^2\hat{\mathfrak{sl}}_2 with lowest weight βˆ’Ξ›0-\Lambda_0 (resp. βˆ’Ξ›1-\Lambda_1). We also suggest a possible tensor product structure of the full space of ∞\infty-cycles.Comment: 27 pages, abstract and section 3.1 revise
    • …
    corecore