17 research outputs found

    GT198 Expression Defines Mutant Tumor Stroma in Human Breast Cancer

    Get PDF
    Human breast cancer precursor cells remain to be elucidated. Using breast cancer gene product GT198 (PSMC3IP; alias TBPIP or Hop2) as a unique marker, we revealed the cellular identities of GT198 mutant cells in human breast tumor stroma. GT198 is a steroid hormone receptor coactivator and a crucial factor in DNA repair. Germline mutations in GT198 are present in breast and ovarian cancer families. Somatic mutations in GT198 are present in ovarian tumor stromal cells. Herein, we show that human breast tumor stromal cells carry GT198 somatic mutations and express cytoplasmic GT198 protein. GT198(+) stromal cells share vascular smooth muscle cell origin, including myoepithelial cells, adipocytes, capillary pericytes, and stromal fibroblasts. Frequent GT198 mutations are associated with GT198(+) tumor stroma but not with GT198(-) tumor cells. GT198(+) progenitor cells are mostly capillary pericytes. When tested in cultured cells, mutant GT198 induces vascular endothelial growth factor promoter, and potentially promotes angiogenesis and adipogenesis. Our results suggest that multiple lineages of breast tumor stromal cells are mutated in GT198. These findings imply the presence of mutant progenitors, whereas their descendants, carrying the same GT198 mutations, are collectively responsible for forming breast tumor microenvironment. GT198 expression is, therefore, a specific marker of mutant breast tumor stroma and has the potential to facilitate diagnosis and targeted treatment of human breast cancer

    Epitope-optimization creates highly immunogenic alpha fetoprotein antigen to break immune tolerance and potently activates CD8 T cells to prevents autochthonous hepatocellular carcinoma

    Get PDF
    In this study, we investigated whether mouse alpha fetoprotein (mAFP), the shared self/tumor antigen of hepatocellular carcinoma (HCC), could be rationally engineered to create effective vaccine to break tolerance and potently activate CD8 T cells to prevent clinically-relevant carcinogen-induced autochthonous HCC. We found that the computer-guided epitope-optimization created optimized opt-mAFP and that immunization with lentivector (lv) expressing opt-mAFP, but not wt-mAFP, potently activated CD8 cells specific for three novel H-2b restricted CD8 epitopes, which cross-recognized wt-mAFP epitopes naturally processed and presented by wt-mAFP+ tumor cells. Immunization with opt-mAFP-lv, but not wt-mAFP-lv, completely protected mice from wt-mAFP+ tumor challenge and effectively prevented carcinogen-induced autochthonous HCC. Prime-boost with opt-mAFP-lv and vaccinia vector opt-mAFP-vv significantly increased the wt-mAFP-specific CD8 T cells that were highly responsive to emerging HCC tumor cells in the liver, enhancing prevention of autochthonous HCC. Our data demonstrate that epitope-optimization creates immunogenic opt-mAFP that is able to break tolerance and activate potent CD8 responses, which can cross-recognize wt-mAFP peptides, but also recognize and kill mAFP+ tumor cells. Our study provides a practical roadmap to develop effective human vaccines that should have a better chance of success than the current human HCC vaccines based on native wt-AFP

    Stress biology:Complexity and multifariousness in health and disease

    Get PDF
    Preserving and regulating cellular homeostasis in the light of changing environmental conditions or developmental processes is of pivotal importance for single cellular and multicellular organisms alike. To counteract an imbalance in cellular homeostasis transcriptional programs evolved, called the heat shock response, unfolded protein response, and integrated stress response, that act cell-autonomously in most cells but in multicellular organisms are subjected to cell-nonautonomous regulation. These transcriptional programs downregulate the expression of most genes but increase the expression of heat shock genes, including genes encoding molecular chaperones and proteases, proteins involved in the repair of stress-induced damage to macromolecules and cellular structures. Sixty-one years after the discovery of the heat shock response by Ferruccio Ritossa, many aspects of stress biology are still enigmatic. Recent progress in the understanding of stress responses and molecular chaperones was reported at the 12th International Symposium on Heat Shock Proteins in Biology, Medicine and the Environment in the Old Town Alexandria, VA, USA from 28th to 31st of October 2023.</p

    Association and Regulation of Heat Shock Transcription Factor 4b with both Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase and Dual-Specificity Tyrosine Phosphatase DUSP26

    No full text
    The heat shock transcription factors (Hsfs) activate the stress-inducible expression of heat shock proteins (Hsps) and other molecular chaperones in response to stress and, therefore, play an essential role in protein disaggregation and protein folding. In humans, missense mutation in the hsf4 gene causes cataract, and mice bearing a targeted disruption of the hsf4 gene exhibit defects in lens fiber cell differentiation and early cataract formation. Here, we show that Hsf4b is a direct target of the mitogen-activated protein (MAP) kinase extracellular signal-related kinase (ERK) and that phosphorylation of Hsf4b by ERK leads to increased ability of Hsf4b to bind DNA. Surprisingly, Hsf4b also interacts with an ERK-specific dual-specificity tyrosine phosphatase named DUSP26 identified from a yeast two-hybrid screen. While activated ERK phosphorylates Hsf4b, DUSP26 controls the activity of ERK, leading to phosphorylation/dephosphorylation of Hsf4b, altering its ability to bind DNA. Therefore, DUSP26 interaction with Hsf4b places this transcription factor within a regulatory circuit in the MAP kinase signaling pathway
    corecore