14 research outputs found
Identification and Characterization of the Host Protein DNAJC14 as a Broadly Active Flavivirus Replication Modulator
Viruses in the Flavivirus genus of the Flaviviridae family are arthropod-transmitted and contribute to staggering numbers of human infections and significant deaths annually across the globe. To identify cellular factors with antiviral activity against flaviviruses, we screened a cDNA library using an iterative approach. We identified a mammalian Hsp40 chaperone protein (DNAJC14) that when overexpressed was able to mediate protection from yellow fever virus (YFV)-induced cell death. Further studies revealed that DNAJC14 inhibits YFV at the step of viral RNA replication. Since replication of bovine viral diarrhea virus (BVDV), a member of the related Pestivirus genus, is also known to be modulated by DNAJC14, we tested the effect of this host factor on diverse Flaviviridae family members. Flaviviruses, including the pathogenic Asibi strain of YFV, Kunjin, and tick-borne Langat virus, as well as a Hepacivirus, hepatitis C virus (HCV), all were inhibited by overexpression of DNAJC14. Mutagenesis showed that both the J-domain and the C-terminal domain, which mediates self-interaction, are required for anti-YFV activity. We found that DNAJC14 does not block YFV nor HCV NS2-3 cleavage, and using non-inhibitory mutants demonstrate that DNAJC14 is recruited to YFV replication complexes. Immunofluorescence analysis demonstrated that endogenous DNAJC14 rearranges during infection and is found in replication complexes identified by dsRNA staining. Interestingly, silencing of endogenous DNAJC14 results in impaired YFV replication suggesting a requirement for DNAJC14 in YFV replication complex assembly. Finally, the antiviral activity of overexpressed DNAJC14 occurs in a time- and dose-dependent manner. DNAJC14 overexpression may disrupt the proper stoichiometry resulting in inhibition, which can be overcome upon restoration of the optimal ratios due to the accumulation of viral nonstructural proteins. Our findings, together with previously published work, suggest that the members of the Flaviviridae family have evolved in unique and important ways to interact with this host Hsp40 chaperone molecule
Evidence of lumpy skin disease virus over-wintering by transstadial persistence in Amblyomma hebraeum and transovarial persistence in Rhipicephalus decoloratus ticks
Lumpy skin disease is a debilitating cattle disease caused by the lumpy skin disease virus (LSDV), belonging to the genus Capripoxvirus. Epidemics of the disease usually occur in summer, when insect activity is high. Limited information is available on how LSDV persists during inter-epidemic periods. Transmission of LSDV by mosquitoes such as Aedes aegypti has been shown to be mechanical, there is no carrier state in cattle and the role of wildlife in the epidemiology of the disease seems to be of minor importance. Recent studies in ticks have shown transstadial persistence of LSDV in Rhipicephalus appendiculatus and Amblyomma hebraeum as well as transovarial persistence of the virus in Rhipicephalus decoloratus, R. appendiculatus and A. hebraeum. The over-wintering of ticks off the host as part of their life cycles is well known: A. hebraeum and R. appendiculatus over-winter, for example, on the ground as engorged nymphs/unfed (emergent) adults while R. decoloratus over-winters on the ground as engorged females. In this study, transstadial and transovarial persistence of LSDV from experimentally infected A. hebraeum nymphs and R. decoloratus females after exposure to cold temperatures of 5 degrees C at night and 20 degrees C during the day for 2 months was reported. This observation suggests possible over-wintering of the virus in these tick species
STING: infection, inflammation and cancer
The rapid detection of microbial agents is essential for the effective initiation of host defence mechanisms against infection. Understanding how cells detect cytosolic DNA to trigger innate immune gene transcription has important implications — not only for comprehending the immune response to pathogens but also for elucidating the causes of autoinflammatory disease involving the sensing of self-DNA and the generation of effective antitumour adaptive immunity. The discovery of the STING (stimulator of interferon genes)-controlled innate immune pathway, which mediates cytosolic DNA-induced signalling events, has recently provided important insights into these processes, opening the way for the development of novel immunization regimes, as well as therapies to treat autoinflammatory disease and cancer