112 research outputs found

    The Authors Reply:

    Get PDF

    Chimeric carrier proteins for targeted delivery of tumor antigens to professional antigen presenting cells

    Get PDF
    Tumor-specific T lymphocytes can be regarded as a highly effective mechanism for tumor rejection. A substantial number of T-cell defined tumor antigens including mutated oncoproteins and differentiation antigens have been identified. However, while most spontaneous tumors appear to be antigenic, few are immunogenic. Activation of tumor-specific cytotoxic T cells (CTL) requires presentation of tumor antigens by professional antigen presenting cells (APCs) via MHC I molecules. Due to their crucial role in T-cell activation, APCs are being exploited for active cancer immunotherapy. Present experimental strategies include the incubation of dendritic cells with synthetic, tumor specific peptides to achieve uptake of tumor antigens and presentation in the context of MHC molecules. Alternatively, gene therapeutic approaches are aimed at the endogenous expression of tumor antigens in APCs upon transfer of suitable vector constructs. Our strategy for the presentation of tumor antigens by APCs is based on the intracellular delivery of tumor antigens as part of a fusion protein specifically targeted to APC cell surface receptors. We have constructed prototype molecules that contain a soluble fragment of CTLA-4 for cell binding via interaction with B7 molecules, genetically fused to a protein fragment derived from the tumor-associated antigen ErbB2. To improve uptake and direct the antigenic determinant preferentially to the MHC class I pathway, in one of these protein vaccines also the translocation domain of the bacterial Pseudomonas exotoxin A has been included. In the parental toxin this protein domain facilitates escape from the endosomal compartment to the cytosol upon receptor mediated endocytosis. Here we have investigated the in vitro cell binding activity of such reagents and their antitumoral activity in immunocompetent murine model systems. Specific binding to B7 molecules and uptake of bacterially expressed protein vaccines could be demonstrated. Ex vivo restimulation with an ErbB2-derived peptide of splenocytes from Balb/c mice injected with the fusion proteins resulted in enhanced IFN-gamma production by T cells. Protective and therapeutic effects of ErbB2 protein vaccines were also investigated. Vaccinated animals were protected against subsequent challenge with syngeneic ErbB2 expressing tumor cells. Likewise, s.c. injection of ErbB2 protein vaccines in the vicinity of established tumors resulted in tumor rejection and long lasting protection indicating that immunological memory was induced. Our results suggest that chimeric proteins combining a tumor antigen and specific recognition of APCs in a single molecule are suitable for targeted delivery of antigens to professional APCs and might become valuable tools for cancer immunotherapy

    CD38: A NAADP degrading enzyme

    Get PDF
    AbstractThe role of the multifunctional enzyme CD38 in formation of the Ca2+-mobilizing second messenger nicotinic acid adenine dinucleotide phosphate (NAADP) was investigated. Gene silencing of CD38 did neither inhibit NAADP synthesis in intact Jurkat T cells nor in thymus or spleen obtained from CD38 knock out mice. In vitro, both NAADP formation by base-exchange and degradation to 2-phospho adenosine diphosphoribose were efficiently decreased. Thus in vivo CD38 appears to be a NAADP degrading rather than a NAADP forming enzyme, perhaps avoiding desensitizing NAADP levels in intact cells

    Regional IFNγ expression is insufficient for efficacious control of food-borne bacterial pathogens at the gut epithelial barrier

    Get PDF
    IFNγ is critical for host defence against various food-borne pathogens including Salmonella enterica and Listeria monocytogenes, the causative agents of salmonellosis and listeriosis, respectively. We investigated the impact of regional IFNγ expression at the intestinal epithelial barrier on host invasion by salmonellae and listeriae following oral challenge. Transgenic mice (IFNγ-gut), generated on an IFNγ knock-out (KO) background, selectively expressed IFNγ in the gut driven by the modified liver fatty acid-binding protein (Fabpl4× at −132) promoter. Infections with attenuated S. enterica Typhimurium or with L. monocytogenes did not differ significantly in IFNγ-KO, IFNγ-gut and wild-type mice. Further, Listeria-specific CD4+ and CD8+ T cells were not altered in IFNγ-gut mice. Thus, this model indicates that local IFNγ expression by non-immunological cells in the distal part of the small intestine, caecum and colon is insufficient for prevention of gut penetration by S. enterica Typhimurium and L. monocytogene

    Differential requirements for the chemokine receptor CCR7 in T cell activation during Listeria monocytogenes infection

    Get PDF
    Effective priming of T cell responses depends on cognate interactions between naive T cells and professional antigen-presenting cells (APCs). This contact is the result of highly coordinated migration processes, in which the chemokine receptor CCR7 and its ligands, CCL19 and CCL21, play a central role. We used the murine Listeria monocytogenes infection model to characterize the role of the CCR7/CCR7 ligand system in the generation of T cell responses during bacterial infection. We demonstrate that efficient priming of naive major histocompatibility complex (MHC) class Ia–restricted CD8+ T cells requires CCR7. In contrast, MHC class Ib–restricted CD8+ T cells and MHC class II–restricted CD4+ T cells seem to be less dependent on CCR7; memory T cell responses are independent of CCR7. Infection experiments with bone marrow chimeras or mice reconstituted with purified T cell populations indicate that CCR7 has to be expressed on CD8+ T cells and professional APCs to promote efficient MHC class Ia–restricted T cell priming. Thus, different T cell subtypes and maturation stages have discrete requirements for CCR7

    In Vivo Blockade of Murine ARTC2.2 During Cell Preparation Preserves the Vitality and Function of Liver Tissue-Resident Memory T Cells

    Get PDF
    On murine T cells, GPI-anchored ADP-ribosyltransferase 2.2 (ARTC2.2) ADP-ribosylates the P2X7 ion channel at arginine 125 in response to nicotinamide adenine dinucleotide (NAD+) released during cell preparation. We have previously shown that chronic gating of P2X7 by ADP-ribosylation reduces the vitality and function of regulatory T cells and natural killer T cells that co-express high levels of ARTC2.2 and P2X7. Here, we evaluated the expression of ARTC2.2 and P2X7 by effector and memory T cells in the liver of naïve mice and after infection with Listeria monocytogenes (Lm). We found that KLRG1−/CD69+ tissue-resident memory T cells (Trm) in the liver of naïve mice and 7 weeks after infection with Lm express high levels of ARTC2.2 and P2X7. Isolation of liver Trm and subsequent incubation at 37°C resulted in cell death of the majority of CD4+ and CD8+ Trm. Injection of the ARTC2.2-blocking nanobody s+16a 30 min prior to organ harvesting effectively prevented ADP-ribosylation of P2X7 during cell preparation and thereby prevented NAD-induced cell death of the isolated Trm upon subsequent incubation at 37°C. Consequently, preserving Trm vitality by s+16a injection enabled a highly sensitive in vitro cytokine expression profile analyses of FACS sorted liver Trm. We conclude that in vivo blockade of ARTC2.2 during cell preparation by nanobody s+16a injection represents a valuable strategy to study the role and function of liver Trm in mice

    Enhanced TCR-induced Apoptosis in Interferon Regulatory Factor 4–deficient CD4+ Th Cells

    Get PDF
    Transcription factors of the interferon regulatory factor (IRF) family contribute to the regulation of cell proliferation and apoptosis. Here, we show that CD4+ T helper (Th) cells lacking IRF4 (IRF4−/−) are highly sensitive to apoptosis. After infection of IRF4−/− mice with the protozoan parasite Leishmania major, the lesion-draining lymph nodes developed the prototypic lymphadenopathy of wild-type mice after 4 wk, but demonstrated almost total loss of cellularity and enhanced apoptosis after 7 wk. In vitro, activation of IRF4−/− CD4+ Th cells led to greatly increased apoptosis compared with wild-type cells. Coculture of IRF4−/− and IRF4+/+ CD4+ cells did not increase survival of IRF4−/− CD4+ cells, indicating that the enhanced rate of IRF4−/− Th cell apoptosis was neither transferable nor due to lack of a cytokine. Enhanced CD4+ cell apoptosis was also observed after anti-CD95 mAb treatment, despite normal CD95 expression. Removal of endogenous cytokines, notably interleukin (IL)-4, led to increased and equally high levels of IRF4−/− and IRF4+/+ cell apoptosis, whereas the protective activity of exogenous IL-4 was reduced in IRF4−/− CD4+ cells despite normal expression of the IL-4 receptor. Therefore, IRF4 is central in protecting CD4+ cells against proapoptotic stimuli

    Regulatory T cells control the Th1 immune response in murine crescentic glomerulonephritis

    Get PDF
    Crescentic glomerulonephritis is mediated by inappropriate humoral and cellular immune responses toward self-antigens that may result from defects in central and peripheral tolerance. Evidence now suggests that regulatory T cells (Tregs) may be of pathophysiological importance in proliferative and crescentic forms of glomerulonephritis. To analyze the role of endogenous Tregs in a T cell-dependent glomerulonephritis model of nephrotoxic nephritis, we used ‘depletion of regulatory T cell' (DEREG) mice that express the diphtheria toxin receptor under control of the FoxP3 (forkhead box P3) gene promoter. Toxin injection into these mice efficiently depleted renal and splenic FoxP3+ Treg cells as determined by fluorescent-activated cell sorting (FACS) and immunohistochemical analyses. Treg depletion exacerbated systemic and renal interferon-γ (IFNγ) expression and increased recruitment of IFNγ-producing Th1 cells into the kidney without an effect on the Th17 immune response. The enhanced Th1 response, following Treg cell depletion, was associated with an aggravated course of glomerulonephritis as measured by glomerular crescent formation. Thus, our results establish the functional importance of endogenous Tregs in the control of a significantly enhanced systemic and renal Th1 immune response in experimental glomerulonephritis
    • …
    corecore