5 research outputs found

    Using AMANHI-ACT cohorts for external validation of Iowa new-born metabolic profiles based models for postnatal gestational age estimation

    Get PDF
    Background: Globally, 15 million infants are born preterm and another 23.2 million infants are born small for gestational age (SGA). Determining burden of preterm and SGA births, is essential for effective planning, modification of health policies and targeting interventions for reducing these outcomes for which accurate estimation of gestational age (GA) is crucial. Early pregnancy ultrasound measurements, last menstrual period and post-natal neonatal examinations have proven to be not feasible or inaccurate. Proposed algorithms for GA estimation in western populations, based on routine new-born screening, though promising, lack validation in developing country settings. We evaluated the hypothesis that models developed in USA, also predicted GA in cohorts of South Asia (575) and Sub-Saharan Africa (736) with same precision.Methods: Dried heel prick blood spots collected 24-72 hours after birth from 1311 new-borns, were analysed for standard metabolic screen. Regression algorithm based, GA estimates were computed from metabolic data and compared to first trimester ultrasound validated, GA estimates (gold standard).Results: Overall Algorithm (metabolites + birthweight) estimated GA to within an average deviation of 1.5 weeks. The estimated GA was within the gold standard estimate by 1 and 2 weeks for 70.5% and 90.1% new-borns respectively. Inclusion of birthweight in the metabolites model improved discriminatory ability of this method, and showed promise in identifying preterm births. Receiver operating characteristic (ROC) curve analysis estimated an area under curve of 0.86 (conservative bootstrap 95% confidence interval (CI) = 0.83 to 0.89); P \u3c 0.001) and Youden Index of 0.58 (95% CI = 0.51 to 0.64) with a corresponding sensitivity of 80.7% and specificity of 77.6%.Conclusion: Metabolic gestational age dating offers a novel means for accurate population-level gestational age estimates in LMIC settings and help preterm birth surveillance initiatives. Further research should focus on use of machine learning and newer analytic methods broader than conventional metabolic screen analytes, enabling incorporation of region-specific analytes and cord blood metabolic profiles models predicting gestational age accurately

    Using AMANHI-ACT cohorts for external validation of Iowa new-born metabolic profiles based models for postnatal gestational age estimation.

    Get PDF
    BACKGROUND: Globally, 15 million infants are born preterm and another 23.2 million infants are born small for gestational age (SGA). Determining burden of preterm and SGA births, is essential for effective planning, modification of health policies and targeting interventions for reducing these outcomes for which accurate estimation of gestational age (GA) is crucial. Early pregnancy ultrasound measurements, last menstrual period and post-natal neonatal examinations have proven to be not feasible or inaccurate. Proposed algorithms for GA estimation in western populations, based on routine new-born screening, though promising, lack validation in developing country settings. We evaluated the hypothesis that models developed in USA, also predicted GA in cohorts of South Asia (575) and Sub-Saharan Africa (736) with same precision. METHODS: Dried heel prick blood spots collected 24-72 hours after birth from 1311 new-borns, were analysed for standard metabolic screen. Regression algorithm based, GA estimates were computed from metabolic data and compared to first trimester ultrasound validated, GA estimates (gold standard). RESULTS: Overall Algorithm (metabolites + birthweight) estimated GA to within an average deviation of 1.5 weeks. The estimated GA was within the gold standard estimate by 1 and 2 weeks for 70.5% and 90.1% new-borns respectively. Inclusion of birthweight in the metabolites model improved discriminatory ability of this method, and showed promise in identifying preterm births. Receiver operating characteristic (ROC) curve analysis estimated an area under curve of 0.86 (conservative bootstrap 95% confidence interval (CI) = 0.83 to 0.89); P < 0.001) and Youden Index of 0.58 (95% CI = 0.51 to 0.64) with a corresponding sensitivity of 80.7% and specificity of 77.6%. CONCLUSION: Metabolic gestational age dating offers a novel means for accurate population-level gestational age estimates in LMIC settings and help preterm birth surveillance initiatives. Further research should focus on use of machine learning and newer analytic methods broader than conventional metabolic screen analytes, enabling incorporation of region-specific analytes and cord blood metabolic profiles models predicting gestational age accurately

    Machine learning prediction of gestational age from metabolic screening markers resistant to ambient temperature transportation: Facilitating use of this technology in low resource settings of South Asia and East Africa.

    Get PDF
    BACKGROUND: Knowledge of gestational age is critical for guiding preterm neonatal care. In the last decade, metabolic gestational dating approaches emerged in response to a global health need; because in most of the developing world, accurate antenatal gestational age estimates are not feasible. These methods initially developed in North America have now been externally validated in two studies in developing countries, however, require shipment of samples at sub-zero temperature. METHODS: A subset of 330 pairs of heel prick dried blood spot samples were shipped on dry ice and in ambient temperature from field sites in Tanzania, Bangladesh and Pakistan to laboratory in Iowa (USA). We evaluated impact on recovery of analytes of shipment temperature, developed and evaluated models for predicting gestational age using a limited set of metabolic screening analytes after excluding 17 analytes that were impacted by shipment conditions of a total of 44 analytes. RESULTS: With the machine learning model using all the analytes, samples shipped in dry ice yielded a Root Mean Square Error (RMSE) of 1.19 weeks compared to 1.58 weeks for samples shipped in ambient temperature. Out of the 44 screening analytes, recovery of 17 analytes was significantly different between the two shipment methods and these were excluded from further machine learning model development. The final model, restricted to stable analytes provided a RMSE of 1.24 (95% confidence interval (CI) = 1.10-1.37) weeks for samples shipped on dry ice and RMSE of 1.28 (95% CI = 1.15-1.39) for samples shipped at ambient temperature. Analysis for discriminating preterm births (gestational age <37 weeks), yielded an area under curve (AUC) of 0.76 (95% CI = 0.71-0.81) for samples shipped on dry ice and AUC of 0.73 (95% CI = 0.67-0.78) for samples shipped in ambient temperature. CONCLUSIONS: In this study, we demonstrate that machine learning algorithms developed using a sub-set of newborn screening analytes which are not sensitive to shipment at ambient temperature, can accurately provide estimates of gestational age comparable to those from published regression models from North America using all analytes. If validated in larger samples especially with more newborns <34 weeks, this technology could substantially facilitate implementation in LMICs

    In vitro Antibacterial Potency of Leaf Extract of Moringa oleifera against NFGNB Isolated from UTI Patients and their Plasmid Profiling

    Get PDF
    Non-fermenting gram-negative bacteria (NFGNB) endeavouring as major pathogen in infectious disease, predominantly in urinary tract infection (UTI) and increased resistance in NFGNB are matter of concern. This study aimed to evaluate the frequency of NFGNB, antibiotics resistance pattern, plasmid profiling, and antibacterial efficacy of Moringa oleifera against NFGNB. NFGNB were isolated from clinically suspected UTI patients. Identification of isolates and their antibiotics sensitivity pattern were analyzed according to conventional method, and Vitek 2 automated system. Moreover, NFGNB were evaluated for biofilm production and presence of plasmid. Furthermore, antibacterial activity of Moringa oleifera was evaluated against NFGNB. P. aeruginosa (86.0%), and A. baumannii (10.0%) were the most frequent NFGNB followed by Providencia rettgeri 2.0%, Stenotrophomonas maltophilia 1.0%, myroides species 1.0%. 68.6% P. aeruginosa and 60.0% A. baumannii were biofilm producers whereas imipenem and meropenem were the most effective antibiotics. Isolated NFGNB showed multiple bands of plasmid. Furthermore, Moringa oleifera leaves extract showed antibacterial activity against tested NFGNB. MDR-NFGNB presents challenges in treatment and Moringa oleifera leaf extract may be used as an alternative medicine. However, the therapeutic role of specific ingredients present in extract needs further investigation and purification
    corecore