5 research outputs found

    Development of modular machine design and technologies of dynamic action for finishing-grinding treatment by an oscillating abrasive medium

    Get PDF
    A complex approach is proposed to designing machines and technologies for finishinggrinding treatment of complex-shaped parts by an oscillating fine-dispersed abrasive medium. A designed element base has been developed for the design-technological synthesis of the autonomously controlled actuating mechanisms in the form of the device with the processed parts and the reservoir, combined into a single aggregate modular machine. The field of combining schemes of the power actions on an abrasive medium and processed parts has been considered

    Mathematical simulation of motion of working medium at finishing-grinding treatment in the oscillating reservoir

    Get PDF
    The results of mathematical simulation have been carried out for the pattern of working medium motion providing the technological process of finishing–grinding treatment in an oscillating reservoir. With use of physics laws, it is ascertained and grounded that the flow of granules at the plane wall of reservoir is travelling oppositely to the source of vibrations, whereas the granules are drifting on the cycloid–trochoid trajectories from the wall of reservoir, where the looped displacement is maximal, to the center of reservoir in which the shift of granules is reduced to minimum because of damping and dissipation effect. The received theoretical regulations have a fundamental nature and can be used at the account of technological parameters of designed vibration machines

    The Use of the Kinetic Theory of Gases to Simulate the Physical Situations on the Surface of Autonomously Moving Parts During Multi-Energy Vibration Processing

    No full text
    The multi-energy vibration processing, namely the combination of different energies or forces acting on a free abrasive medium for grinding of metal parts, is becoming more used in finishing processes, in recent years. However, the complexity that is involved in the aforementioned process requires a careful look in the particularities of the process itself in general and the movement of the abrasive media, in particular. In this paper, the nature of the collective movement of abrasive granules between the independently oscillating surfaces of the reservoir and the processed parts is described. This study presents the dissipation of the kinetic energy of the granules in a pseudo-gas from the working medium granules. The motion of the medium granules near the part surface, which is caused by pseudo-waves initiated by vibrations of the working surfaces of the vibration machine reservoir, is demonstrated. Furthermore, the nature of the motion of the granules near the oscillating part surface is described. The analysis that is presented here permits the determination of metal removal quantity from the surface of the workpiece as a result of multi-agent group action of the vibrating reservoir surface and the processed part. The optimal conditions for the finishing process can be determined based on the analysis presented

    Simulation of the Circulating Motion of the Working Medium and Metal Removal during Multi-Energy Processing under the Action of Vibration and Centrifugal Forces

    No full text
    The rotational motion of the medium granules under the influence of an impeller installed in the bottom of a cylindrical reservoir is considered. The dependencies of the circulation velocity of the abrasive granules, as well as the dependence of the pressure in the circulation flow of the granules on the radius of the vibrating machine cylindrical reservoir for different speeds of the impeller rotation are obtained. Furthermore, the velocities of the abrasive granules at various distances from the center of the cylindrical reservoir of the vibrating machine have been determined. The amplitudes of the tangential and radial components of the velocity of movement of pseudo-gas from abrasive granules are obtained. The total pressure on the surface of the processed part and the average velocity of the abrasive granules colliding with it are determined. The graphical dependencies of the integral metal removal on the amplitude and frequency of oscillations of the walls of the vibrating machine reservoir are given for various values of the angular velocities of the impeller rotation
    corecore