22 research outputs found

    Hemodynamic and autonomic response to acute hemorrhage in streptozotocin-induced diabetic rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The various autonomic control systems lead to characteristic changes in heart rate (HR) and blood pressure (BP) during acute hemorrhage. However, cardiovascular autonomic neuropathy due to diabetes mellitus may interfere with the normal compensation for hemorrhage.</p> <p>Materials and methods</p> <p>A controlled graded bleeding (6 - 36% loss of estimated total blood volume: ETBV) was performed in streptozotocin-induced diabetic rats (STZ rats) under a conscious state. Hemodynamic and autonomic responses to acute hemorrhage were examined using analysis of BP-HR variability. The effects of dextran treatment after hemorrhage were also examined.</p> <p>Results</p> <p>A significant reduction in mean arterial pressure began at 12% ETBV loss in STZ rats and 18% in the control rats, respectively. When blood loss reached 18% of TEBV, the decrease in HR was prominent in STD rats due to the activation of a parasympathetic drive, as indicated by the increase in high frequency (HF; 0.75~3.0 Hz) power in HR variability, while in the control rats this response was not observed. The administration of dextran prevented the activation of the parasympathetic drive in STZ rats during hemorrhaging. In the control rats, the dextran treatment sustained the initial increase in HR with reduced HF power in HR variability.</p> <p>Conclusion</p> <p>STZ rats showed different hemodynamic and autonomic responses to acute hemorrhage from the control rats. STZ rats were prone to develop bradycardiac hypotension characterized by marked parasympathetic activation during hemorrhaging. This finding suggests enhancement of the Bezold-Jarisch reflex in STZ rats. Dextran treatment to maintain a normovolemic hemorrhage state inhibits this reflex.</p

    Premedication with midazolam in intellectually disabled dental patients: intramuscular or oral administration? A retrospective study

    Get PDF
    Background: The use of midazolam for dental care in patients with intellectual disability is poorly documented. The purpose of this study was to determine which method of premedication is more effective for these patients, 0.15 mg/kg of intramuscular midazolam or 0.3 mg/kg of oral midazolam. Material and Methods: This study was designed and implemented as a non-randomized retrospective study. The study population was composed of patients with intellectual disability who required dental treatment under ambulatory general anesthesia from August 2009 through April 2013. Patients were administered 0.15 mg/kg of midazolam intramuscularly (Group IM) or 0.3 mg/kg orally (Group PO). The predictor variable was the method of midazolam administration. The outcome variables measured were Observer’s Assessment of Alertness/ Sedation (OAA/S) Scale scores, the level of cooperation when entering the operation room and for venous cannulation, post-anesthetic agitation and recovery time. Results: Midazolam was administered intramuscularly in 23 patients and orally in 21 patients. More patients were successfully sedated with no resistance behavior during venous cannulation in Group PO than in Group IM ( p =0.034). There were no differences in demographic data and other variables between the groups. Conclusions: The results of this study suggest that oral premedication with 0.3 mg/kg of midazolam is more effective than 0.15 mg/kg of midazolam administered intramuscularly, in terms of patient resistance to venous cannulation. If both oral and intramuscular routes of midazolam are acceptable in intellectually disabled patients, the oral route is recommended

    Effects of glucose-insulin infusion during major oral and maxillofacial surgery on postoperative complications and outcomes

    No full text
    Abstract Background Secretion of hormones, which antagonize the action of insulin, is facilitated in response to surgery, and acute resistance to the action of insulin develops. Our aim is to elucidate the effects of intraoperative glycemic control by glucose-insulin (GI) infusion on postoperative complications and outcomes in major oral and maxillofacial surgery. Findings Thirty patients aged ≥ 60 years undergoing a radical operation of oral malignant tumors with tissue reconstruction (≥ 8 h) were analyzed. In the GI group, regular insulin was continuously applied with glucose-added acetate Ringer’s solution (5–10 g glucose per 500 mL). Blood glucose was adjusted within the target concentration of 80–120 mg/dL. In the control group, combination of acetate Ringer’s solution containing 1% (W/V) glucose and lactate Ringer’s solution, which contains no glucose, was employed. Perioperative clinical parameters, incidence of hypoalbuminemia, and postoperative complications, i.e., surgical site infection, necrosis of a reconstructed flap, bacteremia, hypotension, or pneumonia, were compared. Both serum total protein and albumin concentrations (postoperative day 1 [Day1]) were higher in the GI group. The mean infusion rate of glucose during surgery (mg/kg/h) was independently associated with the decrease in both serum total protein and albumin concentrations from the control to Day1. No difference was found between the groups in the incidence of postoperative complications and the days required until discharge, except less incidence of hypoalbuminemia in the GI group. Conclusions Application of additional glucose during major oral and maxillofacial surgery preserved serum albumin concentration. However, it did not lead to less postoperative complications and less days until discharge

    Influence of acute progressive hypoxia on cardiovascular variability in conscious spontaneously hypertensive rats

    Get PDF
    The purpose of this study is to examine the influence of acute progressive hypoxia on cardiovascular variability and striatal dopamine (DA) levels in conscious, spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY). After preparation for measurement, the inspired oxygen concentration of rats was decreased to 10% within 5 min (descent stage), maintained at 10% for 10 min (fixed stage), and then elevated back to 20% over 5 min (recovery stage). The systolic blood pressure (SBP) and heart rate (HR) variability at each stage was calculated to evaluate the autonomic nervous system response using the wavelet method. Striatal DA during each stage was measured using in vivo microdialysis. We found that SHR showed a more profound hemodynamic response to progressive hypoxia as compared to WKY. Cardiac parasympathetic activity in SHR was significantly inhibited by acute progressive hypoxia during all stages, as shown by the decrease in the high frequency band of HR variability (HR-HF), along with transient increase in sympathetic activity during the early hypoxic phase. This decrease in the HR-HF continued even when SBP was elevated. Striatal DA levels showed the transient similar elevation in both groups. These findings suggest that acute progressive hypoxic stress in SHR inhibits cardiac parasympathetic activity through reduction of baroreceptor reflex sensitivity, with potentially severe deleterious effects on circulation, in particular on HR and circulatory control. Furthermore, it is thought that the influence of acute progressive hypoxia on striatal DA levels is similar in SHR and WKY

    Kamishoyosan and Kamikihito protect against decreased KCC2 expression induced by the P. gingivalis lipopolysaccharide treatment in PC-12 cells and improve behavioral abnormalities in male mice

    No full text
    Kamishoyosan (KSS) and Kamikihito (KKT) have been traditionally prescribed for neuropsychiatric symptoms in Japan. However, the molecular mechanism of its effect is not elucidated enough. On the other hand, it has been reported that lipopolysaccharide derived from Porphyromonas gingivalis (P. g LPS) is involved not only in periodontal disease but also in the systemic diseases such as psychiatric disorders via neuroinflammation. Here, we investigated the molecular mechanism of KSS and KKT treatment by LPS-induced neuropathy using PC-12 cells. When P. g LPS was administrated during the NGF treatment, the KCC2 expression was decreased in PC-12 cells. P. g LPS treatment also decreased the WNK and phospho SPAK (pSPAK) expression and enhanced GSK-3β expression that negatively regulates WNK-SPAK signaling. Moreover, when KSS or KKT was administrated before P. g LPS treatment, the decrease of KCC2, WNK and pSPAK was rescued. KSS and KKT treatment also rescued the enhancement of GSK3β expression by P. g LPS treatment. Furthermore, KSS, KKT and/or oxytocin could rescue behavioral abnormalities caused by P. g LPS treatment by animal experiments. These effects were not shown in the Goreisan treatment, which has been reported to act on the central nervous system. These results indicate that KSS and KKT are candidates for therapeutic agents for neural dysfunction
    corecore