22 research outputs found

    Silage produces biofuel for local consumption

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the normal process of bioethanol production, biomass is transported to integrated large factories for degradation to sugar, fermentation, and recovery of ethanol by distillation. Biomass nutrient loss occurs during preservation and degradation. Our aim was to develop a decentralized ethanol production system appropriate for farm or co-operative level production that uses a solid-state fermentation method for producing bio-ethanol from whole crops, provides cattle feed, and produces no wastes. The idea is to incorporate traditional silage methods with simultaneous saccharification and fermentation. Harvested, fresh biomass is ensiled with biomass-degrading enzymes and yeast. Multiple parallel reactions for biomass degradation and ethanol and lactic acid production are induced in solid culture in hermetically sealed containers at a ranch. After fermentation, ethanol is collected on site from the vapor from heated fermented products.</p> <p>Results</p> <p>The parallel reactions of simultaneous saccharification and fermentation were induced efficiently in the model fermentation system. In a laboratory-scale feasibility study of the process, 250 g of freshly harvested forage rice with 62% moisture was treated with 0.86 filter paper units/g dry matter (DM) of cellulase and 0.32 U/g DM of glucoamylase. After 20 days of incubation at 28°C, 6.4 wt.% of ethanol in fresh matter (equivalent to 169 g/kg DM) was produced. When the 46 wt.% moisture was gathered as vapor from the fermented product, 74% of the produced ethanol was collected. Organic cellular contents (such as the amylase and pronase degradable fractions) were decreased by 63% and organic cell wall (fiber) content by 7% compared to silage prepared from the same material.</p> <p>Conclusions</p> <p>We confirmed that efficient ethanol production is induced in nonsterilized whole rice plants in a laboratory-scale solid-state fermentation system. For practical use of the method, further study is needed to scale-up the fermentation volume, develop an efficient ethanol recovery method, and evaluate the fermentation residue as an actual cattle feed.</p

    Fatigue Property and Cytocompatibility of a Biomedical Co–Cr–Mo Alloy Subjected to a High Pressure Torsion and a Subsequent Short Time Annealing

    Get PDF
    In the present study, we evaluated the effects of high pressure torsion (HPT) and subsequent short time annealing processing on fatigue properties and cytocompatibility of the biomedical Co–Cr–Mo alloy (CCM). Before processing, CCM was solution treated (CCMST) to achieve a microstructure composed of coarse single γ-phase equiaxed grains with no internal strain. Through HPT processing, an inhomogeneous microstructure containing both micro- and nano-scaled grains is obtained in CCM specimens, which were named as CCMHPT, accompanied by high internal strain and extensive ε martensite. Following a subsequent short time annealing, a uniform single γ-phase ultrafine-grained microstructure with small local strain fields dispersed forms in CCM specimens, which were named as CCMHPTA. This microstructure change improves fatigue strength in CCMHPT, and further in CCMHPTA, because of the enhanced crack initiation and/or propagation resistance. For cytocompatibility evaluation, the cells cultured on CCMST show an immobilization tendency, while those cultured on CCMHPT exhibit a locomotion tendency. The cells cultured on CCMHPTA have an intermediate pattern. Compared with CCMST, much larger numbers of cells are proliferated in both CCMHPT and CCMHPTA. All these results demonstrate that the CCMHPTA offers an improved fatigue property and a good cytocompatibility. Therefore, it is promising for use in biomedical applications

    PCR-based specific detection of Ralstonia solanacearum race 4 strains

    No full text

    Purification and Properties of a New Chitin-binding Antifungal CB-1 from Bacillus licheniformis

    No full text
    corecore