59 research outputs found

    Effective Theory Approach to the Skyrme model and Application to Pentaquarks

    Full text link
    The Skyrme model is reconsidered from an effective theory point of view. From the most general chiral Lagrangian up to including terms of order p4p^4, NcN_c and δm2\delta m^2 (δmmsm\delta m\equiv m_s-m), new interactions, which have never been considered before, appear upon collective coordinate quantization. We obtain the parameter set best fitted to the observed low-lying baryon masses, by performing the second order perturbative calculations with respect to δm\delta m. We calculate the masses and the decay widths of the other members of (mainly) anti-decuplet pentaquark states. The formula for the decay widths is reconsidered and its baryon mass dependence is clarified.Comment: 65 pages, 1 figure. Revised version:the complete second order perturbative calculations performed and two appendices adde

    Earthquake research in China : ERC

    No full text
    It is often a challenging task to make a system satisfy desirable security properties and maintain a low computational overhead. In this paper, we attempt to minimize the gap for two identity-based key agreement protocols, in the sense that we allow our key agreement protocols to satisfy all general desirable security properties including master-key forward security and in the meanwhile achieve a good computational efficiency. Our protocols are novel, since we are able to make use of several nice algebraic properties of the Weil Pairing to outperform other state-of-the-art key agreement protocols. To our knowledge, our second protocol is the first identity-based protocol that provides master key forward security and satisfies all basic desirable security properties based on the key extraction algorithm due to Sakai and Kasahara
    corecore