343 research outputs found

    The effect of detachment and attachment to a kink motion in the asymmetric simple exclusion process

    Full text link
    We study the dynamics of a kink in a one-lane asymmetric simple exclusion process with detachment and attachment of the particle at arbitrary sites. For a system with one site of detachment and attachment we find that the kink is trapped by the site, and the probability distribution of the kink position is described by the overdumped Fokker-Planck equation with a V-shaped potential. Our results can be applied to the motion of a kink in arbitrary number of sites where detachment and attachment take place. When detachment and attachment take place at every site, we confirm that the kink motion obeys the diffusion in a harmonic potential. We compare our results with the Monte Carlo simulation, and check the quantitative validity of our theoretical prediction of the diffusion constant and the potential form.Comment: 10 pages, 5 figure

    Balance network of asymmetric simple exclusion process

    Full text link
    We investigate a balance network of the asymmetric simple exclusion process (ASEP). Subsystems consisting of ASEPs are connected by bidirectional links with each other, which results in balance between every pair of subsystems. The network includes some specific important cases discussed in earlier works such as the ASEP with the Langmuir kinetics, multiple lanes and finite reservoirs. Probability distributions of particles in the steady state are exactly given in factorized forms according to their balance properties. Although the system has nonequilibrium parts, the expressions are well described in a framework of statistical mechanics based on equilibrium states. Moreover, the overall argument does not depend on the network structures, and the knowledge obtained in this work is applicable to a broad range of problems

    Inhomogeneous Coupling in Two-Channel Asymmetric Simple Exclusion Processes

    Full text link
    Asymmetric exclusion processes for particles moving on parallel channels with inhomogeneous coupling are investigated theoretically. Particles interact with hard-core exclusion and move in the same direction on both lattices, while transitions between the channels is allowed at one specific location in the bulk of the system. An approximate theoretical approach that describes the dynamics in the vertical link and horizontal lattice segments exactly but neglects the correlation between the horizontal and vertical transport is developed. It allows us to calculate stationary phase diagrams, particle currents and densities for symmetric and asymmetric transitions between the channels. It is shown that in the case of the symmetric coupling there are three stationary phases, similarly to the case of single-channel totally asymmetric exclusion processes with local inhomogeneity. However, the asymmetric coupling between the lattices lead to a very complex phase diagram with ten stationary-state regimes. Extensive Monte Carlo computer simulations generally support theoretical predictions, although simulated stationary-state properties slightly deviate from calculated in the mean-field approximation, suggesting the importance of correlations in the system. Dynamic properties and phase diagrams are discussed by analyzing constraints on the particle currents across the channels

    Parallel Coupling of Symmetric and Asymmetric Exclusion Processes

    Full text link
    A system consisting of two parallel coupled channels where particles in one of them follow the rules of totally asymmetric exclusion processes (TASEP) and in another one move as in symmetric simple exclusion processes (SSEP) is investigated theoretically. Particles interact with each other via hard-core exclusion potential, and in the asymmetric channel they can only hop in one direction, while on the symmetric lattice particles jump in both directions with equal probabilities. Inter-channel transitions are also allowed at every site of both lattices. Stationary state properties of the system are solved exactly in the limit of strong couplings between the channels. It is shown that strong symmetric couplings between totally asymmetric and symmetric channels lead to an effective partially asymmetric simple exclusion process (PASEP) and properties of both channels become almost identical. However, strong asymmetric couplings between symmetric and asymmetric channels yield an effective TASEP with nonzero particle flux in the asymmetric channel and zero flux on the symmetric lattice. For intermediate strength of couplings between the lattices a vertical cluster mean-field method is developed. This approximate approach treats exactly particle dynamics during the vertical transitions between the channels and it neglects the correlations along the channels. Our calculations show that in all cases there are three stationary phases defined by particle dynamics at entrances, at exits or in the bulk of the system, while phase boundaries depend on the strength and symmetry of couplings between the channels. Extensive Monte Carlo computer simulations strongly support our theoretical predictions.Comment: 16 page

    Development and research of X-band dynamic nuclear polarization system

    Get PDF
    In order to investigate the experimental technique and the high magnetic field effect in the dynamic nuclear polarization (DNP) experiments, the X-band 1H-DNP experiments have been performed on a organic solution of α ,γ-bisdiphenylene-β-phyenylallyl (BDPA) radical at room temperature. Because BDPA-doped toluene solution evaporated immediately during sub-THz irradiation, we tried DNP experiments with changing the solvent from toluene to benzene. As a result, we obtained similar DNP effects on the two solutions. We can expect that benzene solution is an appropriate sample for sub-THz DNP experiments. Further, we performed DNP measurements with degassed sample in order to avoid the relaxation due to oxygen in the sample solution. DNP enhancement observed in our measurements is well interpreted in terms of Overhauser effect

    Spontaneous Symmetry Breaking in Two-Channel Asymmetric Exclusion Processes with Narrow Entrances

    Full text link
    Multi-particle non-equilibrium dynamics in two-channel asymmetric exclusion processes with narrow entrances is investigated theoretically. Particles move on two parallel lattices in opposite directions without changing them, while the channels are coupled only at the boundaries. A particle cannot enter the corresponding lane if the exit site of the other lane is occupied. Stationary phase diagrams, particle currents and densities are calculated in a mean-field approximation. It is shown that there are four stationary phases in the system, with two of them exhibiting spontaneous symmetry breaking phenomena. Extensive Monte Carlo computer simulations confirm qualitatively our predictions, although the phase boundaries and stationary properties deviate from the mean-field results. Computer simulations indicate that several dynamic and phase properties of the system have a strong size dependency, and one of the stationary phases predicted by the mean-field theory disappears in the thermodynamic limit.Comment: 13 page
    corecore