137 research outputs found
Dense shelf water formation process in the Sea of Okhotsk based on an ice‐ocean coupled model
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95161/1/jgrc11630.pd
Equatorial Pacific Subsurface Countercurrents: A Model–Data Comparison in Stream Coordinates
An isopycnal stream-coordinate analysis of velocity, transport, and potential vorticity (PV), recently applied to observations of the subsurface countercurrents (SCCs) in the equatorial Pacific Ocean, is applied here to the SCCs in a numerical general ocean circulation model, run by the Japan Marine Science and Technology Center (JAMSTEC). Each observed SCC core separates regions of nearly uniform potential vorticity: low on the equatorward side, high on the poleward side. Similar low-PV pools are found in the model, but the high-PV region poleward of the southern SCC is missing. The potential vorticity gradient in each core is weaker in the model than in observations, and relative vorticity plays only a minor role in the model. Its unusually high vertical resolution, with 55 levels, together with its weak lateral dissipation may be key factors in the JAMSTEC model\u27s ability to simulate SCCs
Editorial-The 9th International Workshop on Modeling the Ocean (IWMO 2017) in Seoul, Korea, July 3–6, 2017
(First paragraph) The 9th International Workshop on Modeling the Ocean (IWMO 2017) was held in the modern campus of Yonsei University, Seoul, Korea, from July 3–6 2017. The workshop was attended by about 80 participants from countries all around the world, many of whom were young and earliercareer scientists: students and postdocs. Papers were presented covering a broad range oftopics on field observations, analyses, and modeling: wave and air-sea interaction dynamics, climate variability, basin-scale processes and coastal oceanography, sea-ice dynamics, sediment transport, tropical cyclones, biogeochemical-physical coupling, boundary currents, sea-level rise, extreme events, ocean prediction and others. We were pleased to witness very high-quality research and presentations, many from young students and scientists. Thirty three (33) young scholars participated in the Outstanding Young Scientist Award (OYSA) competition; congratulations to all of them! The finalists of the IWMO-2017 OYSAwere: R. Olson (Yonsei University, Korea), Y. Ushijima (Kyoto University, Japan), Y. Choi (Yonsei University, Korea), and Y. J. Tak (Seoul National University, Korea)
Rotating Stratified Barotropic Flow over Topography : Mechanisms of the Cold Belt Formation off the Soya Warm Current along the Northeastern Coast of Hokkaido
The Soya "Warm Current" (SWC) flows through a shallow strait between the Japan Sea and the Sea of Okhotsk. The SWC has a jet structure downstream of the strait along the northern coast of Hokkaido with a maximum speed exceeding 1 m s^[-1] at its axis in summer and fall. A surface cold belt with a subsurface doming structure forms offshore of the SWC axis. Mechanisms of the cold belt formation are discussed from a point of view of resonant interaction between a barotropic stratified flow and a shallow sill and subsequent baroclinic adjustment along the SWC. When a stratified current rides a slope upstream, the thermocline displaces upward greatly and outcrops owing to resonant generation of internal Kelvin waves if the upper layer is thinner than the lower layer. The control section, where a Froude number is unity, occurs "upstream" from the sill crest when the ambient inflow has a barotropic flow component. These upwelling features closely resemble those along the southwestern coast of Sakhalin Island. The SWC then flips from an upwelling-type to a downwelling-type structure; in doing so, it transits from the west coast of Sakhalin to the east coast of Hokkaido. It is this transition that leads to the offshore doming structure, which propagates downstream as a vorticity wave, manifesting the cold belt at the surface
Cross-shelf overturning in geostrophic-stress-dominant coastal fronts
Compared to the dynamics of the predominantly geostrophic along-shelf current, our understanding of the cross-shelf dynamics in the Sea of Okhotsk is inadequate despite their importance in water mixing and nutrient entrainment. We investigated the cross-shelf overturning circulation along the East Sakhalin Current, which is a source of nutrients such as iron for the western North Pacific. Here, we reveal that the cross-shelf circulation during winter is characterised by a nearshore upwelling and a shelf-break downwelling under a downwelling-favourable monsoon wind, contrary to a classical Ekman overturning (EOT). This reverse EOT is driven by the internal water stress, which is caused by intensive vertical mixing and geostrophic vertical shear in the shelf-break front produced by riverine discharges from the far-eastern Eurasian Continent. The EOT blocks the Ekman onshore transport from the open ocean, thereby producing a deep mixed layer at the shelf break. Scaling analyses indicate the applicability of this mechanism to various other shelf-break fronts
Cross-shelf overturning in geostrophic-stress-dominant coastal fronts
Compared to the dynamics of the predominantly geostrophic along-shelf current, our understanding of the cross-shelf dynamics in the Sea of Okhotsk is inadequate despite their importance in water mixing and nutrient entrainment. We investigated the cross-shelf overturning circulation along the East Sakhalin Current, which is a source of nutrients such as iron for the western North Pacific. Here, we reveal that the cross-shelf circulation during winter is characterised by a nearshore upwelling and a shelf-break downwelling under a downwelling-favourable monsoon wind, contrary to a classical Ekman overturning (EOT). This reverse EOT is driven by the internal water stress, which is caused by intensive vertical mixing and geostrophic vertical shear in the shelf-break front produced by riverine discharges from the far-eastern Eurasian Continent. The EOT blocks the Ekman onshore transport from the open ocean, thereby producing a deep mixed layer at the shelf break. Scaling analyses indicate the applicability of this mechanism to various other shelf-break fronts
Far-Reaching Effects of Okhotsk Sea Ice Area on Sea Surface Heat Flux, Lower Atmosphere, and Ocean Mixed Layer
The impact of interannual variations in sea ice area in the Okhotsk Sea was investigated through a composite analysis of years with extensive and limited sea ice areas (referred to as heavy and light ice years, respectively), using atmospheric and oceanic reanalysis data. The comparison of heavy and light ice-year composites in February revealed a substantial decrease in upward surface turbulent heat flux in the Okhotsk Sea (∼−250 W m−2) and a notable increase in a surprisingly extensive region in the western North Pacific (30–120 W m−2), spanning 2300 km from the ice edge. These differences were consistent with the decrease in surface air temperature and specific humidity, suggesting that during heavy ice years, cold and dry air blowing from Siberia to the North Pacific via the Okhotsk Sea undergoes less modification over larger sea ice areas, remaining colder and drier in the North Pacific and thereby enhancing the heat flux. Such advection can be associated with the Asian winter monsoon and migratory cyclones. Cloud cover and surface radiation flux altered consistently with these differences, although longwave and shortwave radiation largely counterbalanced each other. Additionally, the Pacific storm track exhibited variation. In accordance with the heat flux difference, sea surface temperature decreased, and the ocean mixed layer deepened around the subarctic during heavy ice years. These findings suggest that sea ice area in the Okhotsk Sea influences the lower atmosphere and surface ocean in the North Pacific. Such impacts could further affect ocean nutrient circulation, ecosystems, and atmospheric teleconnections
Modeling low-level clouds over the Okhotsk Sea in summer: Cloud formation and its effects on the Okhotsk high
In summer the Okhotsk Sea is often covered by low-level clouds, which occasionally co-occur with the Okhotsk high. We investigate the formation of low-level clouds and their effects on the Okhotsk high in July using reanalysis, satellite data, and a regional climate model. Statistical analysis suggests that the amount of low-level clouds over the Okhotsk Sea has a positive relationship with the strength of the Okhotsk high; however, the formation processes of the Okhotsk high and low-level clouds are not dependent on each other. A simulation focusing on July 2003, when the Okhotsk high was the strongest in the past decade, showed low-level cloud formation and resulting strong cooling over most of the Okhotsk Sea, which can be attributed to longwave radiation. Sensitivity experiments with reduced cloud amounts reveal that this radiative flux results in the cooling of the cloud top boundary layer (CBL), thereby reinforcing the Okhotsk high within the CBL. Trajectory analyses show that unsaturated air reaches saturation mainly because of the downward sensible heat flux. After cloud formation, radiative cooling causes an upward sensible heat flux below the clouds. Such cooling and heating roughly balance with the cooling due to evaporation of drizzle and cloud water and the heating due to condensation. Eventually, the CBL achieves a low-temperature steady state over the Okhotsk Sea. Although the latent heat flux is positive over the Okhotsk Sea irrespective of the presence or absence of low-level clouds, associated moisture flux is insignificant for achieving saturation. This positive latent heat flux is enhanced under cloudy conditions and compensates for the loss of water vapor due to condensation
- …