4,516 research outputs found

    Stability analysis of self-similar behaviors in perfect fluid gravitational collapse

    Get PDF
    Stability of self-similar solutions for gravitational collapse is an important problem to be investigated from the perspectives of their nature as an attractor, critical phenomena and instability of a naked singularity. In this paper we study spherically symmetric non-self-similar perturbations of matter and metrics in spherically symmetric self-similar backgrounds. The collapsing matter is assumed to be a perfect fluid with the equation of state P=αρP=\alpha\rho. We construct a single wave equation governing the perturbations, which makes their time evolution in arbitrary self-similar backgrounds analytically tractable. Further we propose an analytical application of this master wave equation to the stability problem by means of the normal mode analysis for the perturbations having the time dependence given by exp(iωlogt)\exp{(i\omega\log|t|)}, and present some sufficient conditions for the absence of non-oscillatory unstable normal modes with purely imaginary ω\omega.Comment: 17 pages, 3 figures, matched to the published versio

    No periodicity revealed for an "eclipsing" ultraluminous supersoft X-ray source in M81

    Full text link
    Luminous supersoft X-ray sources found in the Milky Way and Magellanic Clouds are likely white dwarfs that steadily or cyclically burn accreted matter on their surface, which are promising type Ia supernova progenitors. Observations of distant galaxies with Chandra and XMM-Newton have revealed supersoft sources that are generally hotter and more luminous, including some ultraluminous supersoft sources (ULSs) that are possibly intermediate mass black holes of a few thousand solar masses. In this paper we report our X-ray spectral and timing analysis for M81-ULS1, an ultraluminous supersoft source in the nearby spiral galaxy M81. M81-ULS1 has been persistently supersoft in 17 Chandra ACIS observations spanning six years, and its spectrum can be described by either a kTbb70kT_{bb}\approx70 eV blackbody for a 1.2M\sim1.2M_\odot white dwarf, or a kTin80kT_{in} \approx 80 eV multicolor accretion disk for a 103M\gtrsim10^3M_\odot intermediate mass black hole. In two observations, the light curves exhibited dramatic flux drop/rise on time scales of 10310^3 seconds, reminiscent of eclipse ingress/egress in eclipsing X-ray binaries. However, the exhaustive search for periodicity in the reasonable range of 50 ksec to 50 days failed to reveal an orbital period. The failure to reveal any periodicity is consistent with the long period (30\ge30 yrs) predicted for this system given the optical identification of the secondary with an asymptotic giant star. Also, the eclipse-like dramatic flux changes in hours are hard to explain under the white dwarf model, but can in principle be explained by disk temperature changes induced by accretion rate variations under the intermediate mass black hole model.Comment: 19 pages, 7 figures, 1 table, to appear in ApJ

    Spectral evolution of the microquasar XTE J1550-564 over its entire 2000 outburst

    Full text link
    We report on RXTE observations of the microquasar XTE J1550-564 during a ~70 day outburst in April-June 2000. We study the evolution of the PCA+HEXTE spectra over the outburst. The source transited from an initial Low Hard State (LS), to an Intermediate State (IS), and then back to the LS. The source shows an hysteresis effect similar to what is observed in other sources, favoring a common origin for the state transitions in soft X-ray transients. The first transition occurs at a ~ constant 2-200 keV flux, which probably indicates a change in the relative importance of the emitting media. The second transition is more likely driven by a drop in the mass accretion rate. In both LS, the spectra are characterized by the presence of a strong power-law tail (Compton corona) with a variable high energy cut-off. During the IS, the spectra show the presence of a ~0.8 keV thermal component (accretion disk). We discuss the apparently independent evolution of the two media, and show that right after the X-ray maximum on MJD 51662, the decrease of the source luminosity is due to a decrease of the power-law luminosity, at a constant disk luminosity. This, together with the detection of radio emission (with a spectrum typical of optically thin synchrotron emission), may suggest that the corona is ejected and further detected as a discrete radio ejection.Comment: Accepted for publication in ApJ. 9 pages, 4 figures, abstract abridge

    Breakdown of self-similar evolution in homogeneous perfect fluid collapse

    Get PDF
    The stability analysis of self-similar solutions is an important approach to confirm whether they act as an attractor in general non-self-similar gravitational collapse. Assuming that the collapsing matter is a perfect fluid with the equation of state P=αρP=\alpha\rho, we study spherically symmetric non-self-similar perturbations in homogeneous self-similar collapse described by the flat Friedmann solution. In the low pressure approximation α1\alpha \ll 1, we analytically derive an infinite set of the normal modes and their growth (or decay) rate. The existence of one unstable normal mode is found to conclude that the self-similar behavior in homogeneous collapse of a sufficiently low pressure perfect fluid must terminate and a certain inhomogeneous density profile can develop with the lapse of time.Comment: 9 pages, 1 figure, references added, published in Physical Review

    ASCA Observations of OAO 1657-415 and its Dust-Scattered X-Ray Halo

    Full text link
    We report on two ASCA observations of the high-mass X-ray binary pulsar OAO 1657-415. A short observation near mid-eclipse caught the source in a low-intensity state, with a weak continuum and iron emission dominated by the 6.4-keV fluorescent line. A later, longer observation found the source in a high-intensity state and covered the uneclipsed through mid-eclipse phases. In the high-intensity state, the non-eclipse spectrum has an absorbed continuum component due to scattering by material near the pulsar and 80 per cent of the fluorescent iron emission comes from less than 19 lt-sec away from the pulsar. We find a dust-scattered X-ray halo whose intensity decays through the eclipse. We use this halo to estimate the distance to the source as 7.1 +/- 1.3 kpc.Comment: Accepted for publication in MNRA

    Suzaku and BeppoSAX X-ray Spectra of the Persistently Accreting Neutron-Star Binary 4U 1705-44

    Get PDF
    We present an analysis of the broad-band spectra of 4U~1705--44 obtained with {\it Suzaku} in 2006--2008 and by {\it BeppoSAX} in 2000. The source exhibits two distinct states: the hard state shows emission from 1 to 150 keV, while the soft state is mostly confined to be <40<40 keV. We model soft-state continuum spectra with two thermal components, one of which is a multicolor accretion disk and the other is a single-temperature blackbody to describe the boundary layer, with additional weak Comptonization represented by either a simple power law or the SIMPL model by Steiner et al. The hard-state continuum spectra are modeled by a single-temperature blackbody for the boundary layer plus strong Comptonization, modeled by a cutoff power law. While we are unable to draw firm conclusions about the physical properties of the disk in the hard state, the accretion disk in the soft state appears to approximately follow LT3.2L\propto T^{3.2}. The deviation from LT4L\propto T^4, as expected from a constant inner disk radius, might be caused by a luminosity-dependent spectral hardening factor and/or real changes of the inner disk radius in some part of the soft state. The boundary layer apparent emission area is roughly constant from the hard to the soft states, with a value of about 1/11 of the neutron star surface. The magnetic field on the surface of the NS in 4U~1705--44 is estimated to be less than about 1.9×1081.9\times 10^8 G, assuming that the disk is truncated by the ISCO or by the neutron star surface. Broad relativistic Fe lines are detected in most spectra and are modeled with the diskline model. The strength of the Fe lines is found to correlate well with the boundary layer emission in the soft state. In the hard state, the Fe lines are probably due to illumination of the accretion disk by the strong Comptonization emission.Comment: Accepted for publication in the Astrophysical Journa

    Discovery of Diffuse Hard X-ray Emission around Jupiter with Suzaku

    Full text link
    We report the discovery of diffuse hard (1-5 keV) X-ray emission around Jupiter in a deep 160 ks Suzaku XIS data. The emission is distributed over ~16x8 Jovian radius and spatially associated with the radiation belts and the Io Plasma Torus. It shows a flat power-law spectrum with a photon index of 1.4+/-0.2 with the 1-5 keV X-ray luminosity of (3.3+/-0.5)x10^15 erg/s. We discussed its origin and concluded that it seems to be truly diffuse, although a possibility of multiple background point sources can not be completely rejected with a limited angular resolution. If it is diffuse, the flat continuum indicates that X-rays arise by the non-thermal electrons in the radiation belts and/or the Io Plasma Torus. The synchrotron and bremsstrahlung models can be rejected from the necessary electron energy and X-ray spectral shape, respectively. The inverse-Compton scattering off solar photons by ultra-relativistic (several tens MeV) electrons can explain the energy and the spectrum but the necessary electron density is >~10 times larger than the value estimated from the empirical model of Jovian charge particles.Comment: 18 pages, 4 figures, accepted in ApJ
    corecore