231 research outputs found

    Impurity effects on optical response in a finite band electronic system coupled to phonons

    Full text link
    The concepts, which have traditionally been useful in understanding the effects of the electron--phonon interaction in optical spectroscopy, are based on insights obtained within the infinite electronic band approximation and no longer apply in finite band metals. Impurity and phonon contributions to electron scattering are not additive and the apparent strength of the coupling to the phonon degrees of freedom is substantially reduced with increased elastic scattering. The optical mass renormalization changes sign with increasing frequency and the optical scattering rate never reaches its high frequency quasiparticle value which itself is also reduced below its infinite band value

    Giant Carrier Mobility in Single Crystals of FeSb2

    Full text link
    We report the giant carrier mobility in single crystals of FeSb2. Nonlinear field dependence of Hall resistivity is well described with the two-carrier model. Maximum mobility values in high mobility band reach ~10^5 cm^2/Vs at 8 K, and are ~10^2 cm^2/Vs at the room temperature. Our results point to a class of materials with promising potential for applications in solid state electronics.Comment: 5 pages, 3 figures. Applied Physics Letters (in press

    Anisotropy in the magnetic and electrical transport properties of Fe1-xCrxSb2

    Full text link
    We have investigated anisotropy in magnetic and electrical transport properties of Fe1-xCrxSb2 (0<= x <=1) single crystals. The magnetic ground state of the system evolves from paramagnetic to antiferromagnetic with gradual substitution of Fe with Cr. Anisotropy in electrical transport diminishes with increased Cr substitution and fades away by x=0.5. We find that the variable range hopping (VRH) conduction mechanism dominates at low temperatures for 0.4<= x <=0.75.Comment: 5 pages, 6 figure

    Anisotropy in magnetic and transport properties of Fe1-xCoxSb2

    Full text link
    Anisotropic magnetic and electronic transport measurements were carried out on large single crystals of Fe1-xCoxSb2 (0<= x <=1). The semiconducting state of FeSb2 evolves into metallic and weakly ferromagnetic by substitution of Fe with Co for x<0.5. Further doping induces structural transformation from orthorhombic Pnnm structure of FeSb2 to monoclinic P21/c structure of CoSb2 where semiconducting and diamagnetic ground state is restored again. Large magnetoresistance and anisotropy in electronic transport were observed.Comment: 7 pages, 6 figure

    Comment on ``Texture in the Superconducting Order Parameter of CeCoIn5_5 Revealed by Nuclear Magnetic Resonance''

    Full text link
    The study of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state has been of considerable recent interest. Below the temperature T∗T^* which is believed to be the transition temperature (TT) to the FFLO phase in CeCoIn5_5, K. Kakuyanagi et al. (Phys. Rev. Lett. 94, 047602 (2005)) reported a composite NMR spectrum with a tiny component observed at frequencies corresponding to the normal state signal. The results were interpreted as evidence for the emergence of an FFLO state. This result is inconsistent with two other NMR studies of V. F. Mitrovi{\'c} et al. (Phys. Rev. Lett. 97, 117002 (2006)) and B.-L. Young et al. (Phys. Rev. Lett. 98, 036402 (2007)). In this comment we show that the findings of K. Kakuyanagi et al. do not reflect the true nature of the FFLO state but result from excess RF excitation power used in that experiment.Comment: 1 page, to appear in PR

    Changes in Optical Conductivity due to Readjustments in Electronic Density of States

    Full text link
    Within the model of elastic impurity scattering, we study how changes in the energy dependence of the electronic density of states (EDOS) N(ϵ)N(\epsilon) around the Fermi energy ϵF\epsilon_F are reflected in the frequency-dependent optical conductivity σ(ω)\sigma(\omega). While conserving the total number of states in N(ϵ)N(\epsilon) we compute the induced changes in σ(ω)\sigma(\omega) as a function of ω\omega and in the corresponding optical scattering rate 1/τop(ω)1/\tau_{\rm op}(\omega). These quantities mirror some aspects of the EDOS changes but the relationship is not direct. Conservation of optical oscillator strength is found not to hold, and there is no sum rule on the optical scattering rate although one does hold for the quasiparticle scattering. Temperature as well as increases in impurity scattering lead to additional changes in optical properties not seen in the constant EDOS case. These effects have their origin in an averaging of the EDOS around the Fermi energy ϵF\epsilon_F on an energy scale set by the impurity scattering.Comment: 13 pages, 7 figure
    • …
    corecore