6 research outputs found

    The Dual Action of Epigallocatechin Gallate (EGCG), the Main Constituent of Green Tea, against the Deleterious Effects of Visible Light and Singlet Oxygen-Generating Conditions as Seen in Yeast Cells

    No full text
    Green tea extracts (GTEs) as well as their main component, the polyphenol epigallocatechin gallate (EGCG), are known for their versatile antioxidant, antimicrobial, antitumoral or anti-inflammatory effects. In spite of the huge beneficial action, there is increasing evidence that under certain conditions green tea and its components can be detrimental to living organisms. Using <em>Saccharomyces cerevisiae </em>strains<em> </em>with various defects in the response to oxidative stress, we found that GTEs or EGCG act in synergy with visible light, exhibiting either deleterious or protective effects depending on the solvent employed. Similar synergistic effects could be observed under singlet oxygen-generating conditions, such as light exposure in the presence of photosensitizers or UV-A irradiation, therefore solvent variance may represent a powerful tool to modulate the preparation of green tea extracts, depending on the intended target

    Impact Behavior of the Ballistic Targets Package Composed of Dyneema Polymer and High Entropy Alloy Structures

    No full text
    Ballistic targets are multi-material assemblies that can be made of various materials, such as metal alloys, ceramics, and polymers. Their role is to provide collective or individual ballistic protection against high-speed dynamic penetrators or kinetic fragments. The paper presents the impact behavior with incendiary perforating bullets having 7.62 mm of ballistic packages made of combinations between Dyneema ultra-high-molecular-weight polyethylene and high entropy alloy from alloying system AlCoCrFeNi, by analyzing the dynamic phenomena (deformation, perforation) that take place at high speeds. The geometry evolution of the physical model subjected to numerical simulation allows a very good control over the discretization network and also allows the export for modeling to nonlinear transient phenomena. The results obtained by numerical simulation showed that the analyzed ballistic package does not allow sufficient protection for values of impact velocities over 500 m/sec

    Characterisation of a Novel Complex Concentrated Alloy for Marine Applications

    No full text
    Complex concentrated alloys (CCAs) are a new family of materials with near equimolar compositions that fluctuate depending on the characteristics and destination of the material. CCAs expand the compositional limits of the traditional alloys, displaying new pathways in material design. A novel light density Al5Cu0.5Si0.2Zn1.5Mg0.2 alloy was studied to determine the structural particularities and related properties. The alloy was prepared in an induction furnace and then annealed under a protective atmosphere. The resulted specimens were analysed by chemical, structural, mechanical, and corrosion resistance. The structural analyses revealed a predominant FCC and BCC solid solution structure. The alloy produced a compression strength of 500–600 MPa, comparable with conventional aluminium alloys. The corrosion resistance in 3.5% NaCl solution was 0.3424 mm/year for as-cast and 0.1972 mm/year for heat-treated alloy, superior to steel, making the alloy a good candidate for marine applications

    Influence of Heat Treatment on the Corrosion Behavior of Electrodeposited CoCrFeMnNi High-Entropy Alloy Thin Films

    No full text
    In this paper, we investigate what effects heat treatment can have on potentiodynamically electrodeposited high-entropy thin film (HEA) CoCrFeMnNi alloys. We focused our study on the corrosion resistance in synthetic seawater, corroborated with the structure and microstructure of these thin films. Thin films of HEA alloys were deposited on a copper foil substrate, using an electrolyte based on the organic system dimethyl-sulfoxide (DMSO-(CH3)2SO)-acetonitrile (AN-CH3CN) (in a volume ratio of 4:1), which contains LiClO4 as electrolyte support and chloride salts of CoCl2, CrCl3 × 6H2O, FeCl2 × 4H2O, MnCl2 × 4H2O and NiCl2 × 6H2O. Using MatCalc PC software, based on the CALPHAD method, the structure and characteristics of the HEA system were investigated, and thermodynamic and kinetic criteria were calculated. The modeling process generated in the body-centered-cubic (BCC) or face-centered-cubic (FCC) structures a series of optimal compositions that are appropriate to be used in anticorrosive and tribological applications in a marine environment. Electrochemical measurements were carried out in an aerated artificial seawater solution at ambient temperature. In the experimental media, HEA thin films proved to have good corrosion resistance and were even better than the copper substrate. Corrosion resistance was improved after heat treatment, as shown by polarization and EIS tests. The structure and microstructure of HEA thin films before and after corrosion in artificial seawater were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The XRD data showed no significant changes in the structure of HEA heat-treated thin films after the corrosion in saline media. The data obtained by polarization and ESI are supported by results from SEM-EDS. This complex study reveals that, for HEA thin films, heat treatment leads to an increase in corrosion resistance. So, this finding suggests that thermal annealing is an appropriate method for improving the corrosion performance of HEA thin films
    corecore