10 research outputs found

    Feasibility of Application of Near Infrared Reflectance (NIR) Spectroscopy for the Prediction of the Chemical Composition of Traditional Sausages

    No full text
    In the present study, the potential of application of near infrared reflectance (NIR) spectroscopy for the estimation of the chemical composition of traditional (village style) sausages was examined. The chemical composition (moisture, ash, protein and, fat content) was determined by standard reference methods. For the development of the calibration model, 39 samples of traditional fresh sausages were used, while for external validation, 10 samples of sausages were used. The correlation coefficients of calibration (RMSEC) and standard errors (SEC) were 0.92 and 1.58 (moisture), 0.77 and 0.18 (ash), 0.87 and 0.89 (protein) and 0.93 and 1.73 (fat). The cross-validation correlation coefficients (RMSECV) and standard errors (SECV) were 0.86 and 2.13 (moisture), 0.56 and 0.26 (ash), 0.78 and 1.17 (protein), and 0.88 and 2.17 (fat). The results of the calibration model showed that NIR spectroscopy can be applied to estimate with very good precision the fat content of traditional village-style sausages, whereas moisture and protein content can be estimated with good accuracy. The external validation confirmed the ability of NIR spectroscopy to predict the chemical composition of sausages

    Fruit and Vegetable Co-Products as Functional Feed Ingredients in Farm Animal Nutrition for Improved Product Quality

    No full text
    There are significant environmental, economic and social factors favoring the reutilization of fruit and vegetable processing co-products in farm animal nutrition. Current evidence shows that fruit and vegetable processing co-products can be effectively used in farm animal nutrition as functional feed ingredients for the production of food products of improved quality. These ingredients comply with consumer requests for the production of “clean,” “natural” and “eco/green” label food products. The main parameters affecting extensive application of fruit and vegetable processing by-/co-products as functional feed ingredients in livestock nutrition are related to animal factors, logistics, and commercial value. Further research is needed to enable the commercial application of these products to livestock nutrition

    Effects of Production Systems and Seasons on Retail-Goat-Milk Fatty-Acid Composition and Nutritional Indices in Greece

    No full text
    An increased consumer interest in goat milk has been registered in recent years due to its health-related benefits. This study aimed to investigate the effects of production systems and seasons on fatty-acid composition and nutritional indices for the healthy fat consumption of retail goat milk. The study lasted one year, and milk samples (n = 160) from 14 brands (10 conventional and 4 organic) were collected on a monthly basis. Organic milk had a marginally lower fat and protein content compared with conventionally produced milk according to the declared chemical composition. The production system did not significantly affect milk fatty-acid composition and its nutritional value, indicating that there were no major differences in the feeding strategies between conventionally and organically raised ewes. Seasonal effects were observed in the fatty-acid profile and the nutritional indices. Lower content of saturated fatty acids (SFAs), hypocholesterolemic/hypercholesterolemic ratio (h/H) and linoleic acid/α-linolenic acid (LA/ALA) ratio values were observed in summer. Retail goat milk had a desirable nutritional value, irrespective of production system and season, due to the following characteristics: low atherogenic index (AI) and LA/ALA ratio values, and high h/H ratio, desirable fatty acid (DFA) values and health-promoting index values. In conclusion, neither production nor season significantly impacted the fatty-acid composition and the fat-consumption nutritional indices of retail goat milk produced in Greece

    Polyphenol Release from Wheat Bran Using Ethanol-Based Organosolv Treatment and Acid/Alkaline Catalysis: Process Modeling Based on Severity and Response Surface Optimization

    No full text
    Wheat bran (WB) is globally a major food industry waste, with a high prospect as a bioresource in the production of precious polyphenolic phytochemicals. In this framework, the current investigation had as objectives (i) to use ethanol organosolv treatment and study the effect of acid and alkali catalysts on releasing bound polyphenols, (ii) establish linear and quadratic models of polyphenol recovery based on severity and response surface, and (iii) examine the polyphenolic composition of the extracts generated. Using sulfuric acid and sodium hydroxide as the acid and the alkali catalyst, respectively, it was found that the correlation of combined severity factor with total polyphenol yield was significant in the acid catalysis, but a highly significant correlation in the alkali-catalyzed process was established with modified severity factor, which takes into consideration catalyst concentration, instead of pH. Optimization of the process with response surface confirmed that polyphenol release from WB was linked to treatment time, but also catalyst concentration. Under optimized conditions, the acid- and alkali-catalyzed processes afforded total polyphenol yields of 10.93 ± 0.62 and 19.76 ± 0.76 mg ferulic acid equivalents g−1 dry mass, respectively. Examination of the polyphenolic composition revealed that the alkali-catalyzed process had a striking effect on releasing ferulic acid, but the acid catalysis was insufficient in this regard. The outcome concerning the antioxidant properties was contradictory with respect to the antiradical activity and ferric-reducing power of the extracts, a fact most probably attributed to extract constituents other than ferulic acid. The process modeling proposed herein may be valuable in assessing both process effectiveness and severity, with a perspective of establishing WB treatments that would provide maximum polyphenol recovery with minimum harshness and cost

    Polyphenol Release from Wheat Bran Using Ethanol-Based Organosolv Treatment and Acid/Alkaline Catalysis: Process Modeling Based on Severity and Response Surface Optimization

    No full text
    Wheat bran (WB) is globally a major food industry waste, with a high prospect as a bioresource in the production of precious polyphenolic phytochemicals. In this framework, the current investigation had as objectives (i) to use ethanol organosolv treatment and study the effect of acid and alkali catalysts on releasing bound polyphenols, (ii) establish linear and quadratic models of polyphenol recovery based on severity and response surface, and (iii) examine the polyphenolic composition of the extracts generated. Using sulfuric acid and sodium hydroxide as the acid and the alkali catalyst, respectively, it was found that the correlation of combined severity factor with total polyphenol yield was significant in the acid catalysis, but a highly significant correlation in the alkali-catalyzed process was established with modified severity factor, which takes into consideration catalyst concentration, instead of pH. Optimization of the process with response surface confirmed that polyphenol release from WB was linked to treatment time, but also catalyst concentration. Under optimized conditions, the acid- and alkali-catalyzed processes afforded total polyphenol yields of 10.93 ± 0.62 and 19.76 ± 0.76 mg ferulic acid equivalents g−1 dry mass, respectively. Examination of the polyphenolic composition revealed that the alkali-catalyzed process had a striking effect on releasing ferulic acid, but the acid catalysis was insufficient in this regard. The outcome concerning the antioxidant properties was contradictory with respect to the antiradical activity and ferric-reducing power of the extracts, a fact most probably attributed to extract constituents other than ferulic acid. The process modeling proposed herein may be valuable in assessing both process effectiveness and severity, with a perspective of establishing WB treatments that would provide maximum polyphenol recovery with minimum harshness and cost

    Variations in Composition, Antioxidant Profile, and Physical Traits of Goat Milk within the Semi-Intensive Production System in Mountainous Areas during the Post-Weaning to End-of-Lactation Period

    No full text
    Dairy products from mountain-origin milk are known for their superior composition and quality. This study aimed to examine changes in composition, nutritional quality, and antioxidant properties of milk from semi-intensively managed goats in mountainous regions during the post-weaning to end-of-lactation period. Bulk tank milk samples from 10 farms were collected bi-weekly in the period from March to September. The farms were situated in regions with an average altitude of 772.20 m above sea level. The results revealed significant variations in milk composition, with fluctuations in fat, protein, lactose, and total solids. Milk yield per doe showed seasonal differences, with the highest yield in April and the lowest in September. Fatty acid composition exhibited changes throughout the sampling period, with variations in polyunsaturated fatty acids. Nutritional indices, such as the atherogenicity index and thrombogenicity index, remained within the recommended values. Antioxidant properties, including total phenolic content, DPPH, FRAP, and ABTS, showed significant differences, with higher values toward the end of the study. Milk pH, electrical conductivity, brix value, and refractive index also exhibited variations, while density and freezing point remained relatively stable. The study provided valuable information that can be used to develop breeding and feeding plans to achieve uniform milk quality in mountainous regions
    corecore