33 research outputs found

    Allogeneic Hematopoietic Cell Transplantation for Blastic Plasmacytoid Dendritic Cell Neoplasm: A CIBMTR Analysis

    Get PDF
    Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematological malignancy with a poor prognosis and considered incurable with conventional chemotherapy. Small observational studies reported allogeneic hematopoietic cell transplantation (allo-HCT) offers durable remissions in patients with BPDCN. We report an analysis of patients with BPDCN who received an allo-HCT, using data reported to the Center for International Blood and Marrow Transplant Research (CIBMTR). We identified 164 patients with BPDCN from 78 centers who underwent allo-HCT between 2007 and 2018. The 5-year overall survival (OS), disease-free survival (DFS), relapse, and nonrelapse mortality (NRM) rates were 51.2% (95% confidence interval [CI], 42.5-59.8), 44.4% (95% CI, 36.2-52.8), 32.2% (95% CI, 24.7-40.3), and 23.3% (95% CI, 16.9-30.4), respectively. Disease relapse was the most common cause of death. On multivariate analyses, age of ≥60 years was predictive for inferior OS (hazard ratio [HR], 2.16; 95% CI, 1.35-3.46; P = .001), and higher NRM (HR, 2.19; 95% CI, 1.13-4.22; P = .02). Remission status at time of allo-HCT (CR2/primary induction failure/relapse vs CR1) was predictive of inferior OS (HR, 1.87; 95% CI, 1.14-3.06; P = .01) and DFS (HR, 1.75; 95% CI, 1.11-2.76; P = .02). Use of myeloablative conditioning with total body irradiation (MAC-TBI) was predictive of improved DFS and reduced relapse risk. Allo-HCT is effective in providing durable remissions and long-term survival in BPDCN. Younger age and allo-HCT in CR1 predicted for improved survival, whereas MAC-TBI predicted for less relapse and improved DFS. Novel strategies incorporating allo-HCT are needed to further improve outcomes

    Study of the Effect of Vegetable Oil Based Cutting Fluid on Machining Characteristics of AISI 316L Steel

    Full text link
    In the present work, properties of the non-ionic surfactants have been identified to formulate vegetable based cutting fluid (VBCF) of castor oil for the formation of emulsion as non –conventional lubricant. The mineral oil based cutting fluid emulsion is also used for turning operation as conventional lubricant. Experimentation has been carried out for different combinations. Cutting fluid, cutting velocity, feed rate and depth of cut are considered as machining parameters. Then machining with conventional and non-conventional lubricants in wet condition has been carried out upon SS 316 L work piece with carbide cutting inserts tool, to evaluate cutting forces and tool wear. The results show that non-conventional lubricant performs better than conventional cuttingfluid

    Reactionless visual servoing of a multi-arm space robot combined with other manipulation tasks

    No full text
    This paper presents a novel and generic reactionless visual servo controller for a satellite-based multi-arm space robot. The controller is designed to complete the task of visually servoing the robot's end-effectors to a desired pose, while maintaining minimum attitude disturbance on the base-satellite. Task function approach is utilized to coordinate the servoing process and attitude of the base satellite. A redundancy formulation is used to define the tasks. The visual serving task is defined as a primary task, While regulating attitude of the base satellite to zero is defined as a secondary task. The secondary task is defined through a quadratic optimization problem, in such a way that it does not affect the primary task, and simultaneously minimizes its cost function. Stability analysis of the proposed control methodology is also discussed. A set of numerical experiments are carried out on different multi-arm space robotic systems. These systems are a planar dual-arm robot, a spatial dual-arm robot, and a three-arm planar robot. The results of the simulation experiments show efficacy, generality and applicability of the proposed control methodology. (C) 2016 Elsevier B.V. All rights reserved

    Image Based Visual Servoing for Tumbling Objects

    No full text
    Objects in space often exhibit a tumbling motion around the major inertial axis. In this paper, we address the image based visual servoing of a robotic system towards an uncooperative tumbling object. In contrast to previous approaches that require explicit reconstruction of the object and an estimation of its velocity, we propose a novel controller that is able to minimize the feature error directly in image space. This is achieved by observing that the feature points on the tumbling object follow a circular path around the axis of rotation and their projection creates an elliptical track in the image plane. Our controller minimizes the error between this elliptical track and the desired features, such that at the desired pose the features lie on the circumference of the ellipse. The effectiveness of our framework is exhibited by implementing the algorithm in simulation as well on a mobile robot
    corecore