19 research outputs found
Overnight olfactory enrichment using an odorant diffuser improves memory and modifies the uncinate fasciculus in older adults
ObjectiveCognitive loss in older adults is a growing issue in our society, and there is a need to develop inexpensive, simple, effective in-home treatments. This study was conducted to explore the use of olfactory enrichment at night to improve cognitive ability in healthy older adults.MethodsMale and female older adults (N = 43), age 60–85, were enrolled in the study and randomly assigned to an Olfactory Enriched or Control group. Individuals in the enriched group were exposed to 7 different odorants a week, one per night, for 2 h, using an odorant diffuser. Individuals in the control group had the same experience with de minimis amounts of odorant. Neuropsychological assessments and fMRI scans were administered at the beginning of the study and after 6 months.ResultsA statistically significant 226% improvement was observed in the enriched group compared to the control group on the Rey Auditory Verbal Learning Test and improved functioning was observed in the left uncinate fasciculus, as assessed by mean diffusivity.ConclusionMinimal olfactory enrichment administered at night produces improvements in both cognitive and neural functioning. Thus, olfactory enrichment may provide an effective and low-effort pathway to improved brain health
Recommended from our members
Comparison of neural activation in the cerebellum in autistic adolescents with health control adolescents
Neuropathologic, neurochemical, and MRI (magnetic resonance imaging) anatomic studies have shown that the cerebellum is the most consistent site of brain abnormality in autism. However, there are very few functional MRI studies done to understand the functioning of this brain region in autism. In this study, we wanted to determine how the cerebellum responds during response inhibition. We compared neural activity in the cerebellar regions in autistic adolescents and control adolescents. Bonnet et al. (2009) describe two paradigms (Go task and Go/No-Go task) to determine response inhibition. We used similar paradigms in our study. 10 autistic and 10 control subjects were used for our study. Data were analyzed using Neuroimaging tool FSL (Smith et al. 2004). General Linear Model was used to test the hypothesis to determine if both groups have any difference in inhibition. Results show that the autistic group has more activation during response inhibition than the control group. This could be because of the loss of Purkinje cells (Bailey et al. 1998, Kemper et al. 1998). The brain may be rewiring itself and it may use a greater expanse of cerebellar tissue to achieve the same end goal.Statistic
Recommended from our members
Overnight olfactory enrichment using an odorant diffuser improves memory and modifies the uncinate fasciculus in older adults.
OBJECTIVE: Cognitive loss in older adults is a growing issue in our society, and there is a need to develop inexpensive, simple, effective in-home treatments. This study was conducted to explore the use of olfactory enrichment at night to improve cognitive ability in healthy older adults. METHODS: Male and female older adults (N = 43), age 60-85, were enrolled in the study and randomly assigned to an Olfactory Enriched or Control group. Individuals in the enriched group were exposed to 7 different odorants a week, one per night, for 2 h, using an odorant diffuser. Individuals in the control group had the same experience with de minimis amounts of odorant. Neuropsychological assessments and fMRI scans were administered at the beginning of the study and after 6 months. RESULTS: A statistically significant 226% improvement was observed in the enriched group compared to the control group on the Rey Auditory Verbal Learning Test and improved functioning was observed in the left uncinate fasciculus, as assessed by mean diffusivity. CONCLUSION: Minimal olfactory enrichment administered at night produces improvements in both cognitive and neural functioning. Thus, olfactory enrichment may provide an effective and low-effort pathway to improved brain health
Recommended from our members
Latent anxiety in clinical depression is associated with worse recognition of emotional stimuli.
BACKGROUND: Major Depressive Disorder, characterized by cognitive affective biases, is a considerable public health challenge. Past work has shown that higher depressive symptoms are associated with augmented memory of negative stimuli. In contrast, anxiety symptoms have been associated with overgeneralization of emotional memories. Given the high comorbidity of depression and anxiety, it is critical to understand how cognitive affective biases are differentially associated with clinical symptoms. METHOD: We used continuous measures of depression (Beck Depression Inventory [BDI-II]) and anxiety (Beck Anxiety Inventory [BAI]) to evaluate an adult sample (N = 79; 18-41 years old, 58 female). Emotional memory discrimination and recognition memory were tested using an emotional discrimination task. We applied exploratory factor analysis to questions from the BAI and BDI-II to uncover latent constructs consisting of negative affect, anhedonia, somatic anxiety, and cognitive anxiety. RESULTS: We report evidence that anxious symptoms were associated with impaired recognition of negative items after accounting for age and sex. Our exploratory factor analysis revealed that impaired negative item recognition is largely associated with somatic and cognitive anxiety factors. LIMITATIONS: Interpretations in a mixed pathology sample, especially given collinearity among factors, may be difficult. CONCLUSIONS: We provide evidence that somatic and cognitive anxiety are related to impaired recognition memory for negative stimuli. Future clinical investigations should uncover the neurobiological basis supporting the link between recognition of negative stimuli and somatic/cognitive symptoms of anxiety
Why do mothers never stop grieving for their deceased children? Enduring alterations of brain connectivity and function.
A child's death is a profound loss for mothers and affects hundreds of thousands of women. Mothers report inconsolable and progressive grief that is distinct from depression and impacts daily emotions and functions. The brain mechanisms responsible for this relatively common and profound mental health problem are unclear, hampering its clinical recognition and care. In an initial exploration of this condition, we used resting state functional MRI (fMRI) scans to examine functional connectivity in key circuits, and task-based fMRI to examine brain network activity in grieving mothers in response to pictures of their deceased child and as well as recognizable deceased celebrities and unfamiliar individuals. We compared nine mothers who had lost an adult child and aged-matched control mothers with a living child of a similar age. Additionally, we collected diffusion imaging scans to probe structural connectivity and complemented the imaging studies with neuropsychological assessments. Increased functional activation in Ventral Attention/Salience Networks accompanied by a reduced activation in the medial prefrontal cortex in response to the deceased child's picture robustly distinguished the grieving mothers from controls. Heightened resting-state functional connectivity between the paraventricular thalamic nucleus (PVT) and the amygdala distinguished the grieving mothers from the controls and correlated with subjective grief severity. Structurally, maternal grief and its severity were associated with alterations in corticolimbic white matter tracts. Finally, grieving mothers performed worse than controls on neuropsychological tests of learning, memory, and executive function, linked with grief severity. Reduced activation in cortical regions inhibiting emotions and changes in the PVT circuitry-a region involved in long-term emotional memories and decision making under conflict-distinguish grieving mothers from controls. Notably, the magnitude of neurobiological changes correlates with the subjective severity of grief. Together, these new discoveries delineate a prevalent and under-recognized mental health syndrome and chart a path for its appreciation and care
Recommended from our members
Entorhinal-Hippocampal Circuit Integrity Is Related to Mnemonic Discrimination and Amyloid-β Pathology in Older Adults.
Mnemonic discrimination, a cognitive process that relies on hippocampal pattern separation, is one of the first memory domains to decline in aging and preclinical Alzheimer's disease. We tested whether functional connectivity (FC) within the entorhinal-hippocampal circuit, measured with high-resolution resting state fMRI, is associated with mnemonic discrimination and amyloid-β (Aβ) pathology in a sample of 64 cognitively normal human older adults (mean age, 71.3 ± 6.4 years; 67% female). FC was measured between entorhinal-hippocampal circuit nodes with known anatomical connectivity, as well as within cortical memory networks. Aβ pathology was measured with 18F-florbetapir-PET, and neurodegeneration was assessed with subregional volume from structural MRI. Participants performed both object and spatial versions of a mnemonic discrimination task outside of the scanner and were classified into low-performing and high-performing groups on each task using a median split. Low object mnemonic discrimination performance was specifically associated with increased FC between anterolateral entorhinal cortex (alEC) and dentate gyrus (DG)/CA3, supporting the importance of this connection to object memory. This hyperconnectivity between alEC and DG/CA3 was related to Aβ pathology and decreased entorhinal cortex volume. In contrast, spatial mnemonic discrimination was not associated with altered FC. Aβ was further associated with dysfunction within hippocampal subfields, particularly with decreased FC between CA1 and subiculum as well as reduced volume in these regions. Our findings suggest that Aβ may indirectly lead to memory impairment through entorhinal-hippocampal circuit dysfunction and neurodegeneration and provide a mechanism for increased vulnerability of object mnemonic discrimination.SIGNIFICANCE STATEMENT Mnemonic discrimination is a critical episodic memory process that is performed in the dentate gyrus (DG) and CA3 subfield of the hippocampus, relying on input from entorhinal cortex. Mnemonic discrimination is particularly vulnerable to decline in older adults; however, the mechanisms behind this vulnerability are still unknown. We demonstrate that object mnemonic discrimination impairment is related to hyperconnectivity between the anterolateral entorhinal cortex and DG/CA3. This hyperconnectivity was associated with amyloid-β pathology and neurodegeneration in entorhinal cortex, suggesting aberrantly increased network activity is a pathological process. Our findings provide a mechanistic explanation of the vulnerability of object compared to spatial mnemonic discrimination in older adults and has translational implications for choice of outcome measures in clinical trials for Alzheimer's disease
ANTsX neuroimaging-derived structural phenotypes of UK Biobank
Abstract UK Biobank is a large-scale epidemiological resource for investigating prospective correlations between various lifestyle, environmental, and genetic factors with health and disease progression. In addition to individual subject information obtained through surveys and physical examinations, a comprehensive neuroimaging battery consisting of multiple modalities provides imaging-derived phenotypes (IDPs) that can serve as biomarkers in neuroscience research. In this study, we augment the existing set of UK Biobank neuroimaging structural IDPs, obtained from well-established software libraries such as FSL and FreeSurfer, with related measurements acquired through the Advanced Normalization Tools Ecosystem. This includes previously established cortical and subcortical measurements defined, in part, based on the Desikan-Killiany-Tourville atlas. Also included are morphological measurements from two recent developments: medial temporal lobe parcellation of hippocampal and extra-hippocampal regions in addition to cerebellum parcellation and thickness based on the Schmahmann anatomical labeling. Through predictive modeling, we assess the clinical utility of these IDP measurements, individually and in combination, using commonly studied phenotypic correlates including age, fluid intelligence, numeric memory, and several other sociodemographic variables. The predictive accuracy of these IDP-based models, in terms of root-mean-squared-error or area-under-the-curve for continuous and categorical variables, respectively, provides comparative insights between software libraries as well as potential clinical interpretability. Results demonstrate varied performance between package-based IDP sets and their combination, emphasizing the need for careful consideration in their selection and utilization
Recommended from our members
Retraining speech production and fluency in non-fluent/agrammatic primary progressive aphasia.
The non-fluent/agrammatic variant of primary progressive aphasia (nfvPPA) presents with a gradual decline in grammar and motor speech resulting from selective degeneration of speech-language regions in the brain. There has been considerable progress in identifying treatment approaches to remediate language deficits in other primary progressive aphasia variants; however, interventions for the core deficits in nfvPPA have yet to be systematically investigated. Further, the neural mechanisms that support behavioural restitution in the context of neurodegeneration are not well understood. We examined the immediate and long-term benefits of video implemented script training for aphasia (VISTA) in 10 individuals with nfvPPA. The treatment approach involved repeated rehearsal of individualized scripts via structured treatment with a clinician as well as intensive home practice with an audiovisual model using 'speech entrainment'. We evaluated accuracy of script production as well as overall intelligibility and grammaticality for trained and untrained scripts. These measures and standardized test scores were collected at post-treatment and 3-, 6-, and 12-month follow-up visits. Treatment resulted in significant improvement in production of correct, intelligible scripted words for trained topics, a reduction in grammatical errors for trained topics, and an overall increase in intelligibility for trained as well as untrained topics at post-treatment. Follow-up testing revealed maintenance of gains for trained scripts up to 1 year post-treatment on the primary outcome measure. Performance on untrained scripts and standardized tests remained relatively stable during the follow-up period, indicating that treatment helped to stabilize speech and language despite disease progression. To identify neural predictors of responsiveness to intervention, we examined treatment effect sizes relative to grey matter volumes in regions of interest derived from a previously identified speech production network. Regions of significant atrophy within this network included bilateral inferior frontal cortices and supplementary motor area as well as left striatum. Volumes in a left middle/inferior temporal region of interest were significantly correlated with the magnitude of treatment effects. This region, which was relatively spared anatomically in nfvPPA patients, has been implicated in syntactic production as well as visuo-motor facilitation of speech. This is the first group study to document the benefits of behavioural intervention that targets both linguistic and motoric deficits in nfvPPA. Findings indicate that behavioural intervention may result in lasting and generalized improvement of communicative function in individuals with neurodegenerative disease and that the integrity of spared regions within the speech-language network may be an important predictor of treatment response
Altered connectivity of the default mode network in cognitively stable adults with Down syndrome: “Accelerated aging” or a prelude to Alzheimer's disease?
IntroductionMost individuals with Down syndrome (DS) have the neuropathological changes of Alzheimer's disease (AD) by age 40 and will have developed dementia by age 60. Alterations of the intrinsic connectivity of the default mode network (DMN) are associated with AD in the neurotypical population. In this study, we sought to determine whether, and how, connectivity between the hubs of the DMN were altered in cognitively stable adults with DS who did not have evidence of either mild cognitive impairment or AD.MethodsResting state functional MRI scans were collected from 26 healthy adults with DS and 26 healthy age-matched non-DS controls. Nodes comprising the DMN were generated as ROI's (regions of interest) and inter-nodal correlations estimated.ResultsAnalysis of intra-network connectivity of the DMN revealed anterior-posterior DMN dissociation and hyper- and hypo-connectivity, suggesting "accelerated aging" in DS.DiscussionDisruption of the DMN may serve as a prelude for AD in DS
Recommended from our members
Hippocampal dentate gyrus integrity revealed with ultrahigh resolution diffusion imaging predicts memory performance in older adults.
Medial temporal lobe (MTL) atrophy is a core feature of age-related cognitive decline and Alzheimer's disease (AD). While regional volumes and thickness are often used as a proxy for neurodegeneration, they lack the sensitivity to serve as an accurate diagnostic test and indicate advanced neurodegeneration. Here, we used a submillimeter resolution diffusion weighted MRI sequence (ZOOMit) to quantify microstructural properties of hippocampal subfields in older adults (63-98 years old) using tensor derived measures: fractional anisotropy (FA) and mean diffusivity (MD). We demonstrate that the high-resolution sequence, and not a standard resolution sequence, identifies dissociable profiles for CA1, dentate gyrus (DG), and the collateral sulcus. Using ZOOMit, we show that advanced age is associated with increased MD of the CA1 and DG as well as decreased FA of the DG. Increased MD of the DG, reflecting decreased cellular density, mediated the relationship between age and word list recall. Further, increased MD in the DG, but not DG volume, was linked to worse spatial pattern separation. Our results demonstrate that ultrahigh-resolution diffusion imaging enables the detection of microstructural differences in hippocampal subfield integrity and will lead to novel insights into the mechanisms of age-related memory loss