10 research outputs found

    A Mixed-Methods Trial of Broad Band Noise and Nature Sounds for Tinnitus Therapy: Group and Individual Responses Modeled under the Adaptation Level Theory of Tinnitus

    Get PDF
    Objectives: A randomized cross-over trial in 18 participants tested the hypothesis that nature sounds, with unpredictable temporal characteristics and high valence would yield greater improvement in tinnitus than constant, emotionally neutral broadband noise.Study Design: The primary outcome measure was the Tinnitus Functional Index (TFI). Secondary measures were: loudness and annoyance ratings, loudness level matches, minimum masking levels, positive and negative emotionality, attention reaction and discrimination time, anxiety, depression and stress. Each sound was administered using MP3 players with earbuds for 8 continuous weeks, with a 3 week wash-out period before crossing over to the other treatment sound. Measurements were undertaken for each arm at sound fitting, 4 and 8 weeks after administration. Qualitative interviews were conducted at each of these appointments.Results: From a baseline TFI score of 41.3, sound therapy resulted in TFI scores at 8 weeks of 35.6; broadband noise resulted in significantly greater reduction (8.2 points) after 8 weeks of sound therapy use than nature sounds (3.2 points). The positive effect of sound on tinnitus was supported by secondary outcome measures of tinnitus, emotion, attention, and psychological state, but not interviews. Tinnitus loudness level match was higher for BBN at 8 weeks; while there was little change in loudness level matches for nature sounds. There was no change in minimum masking levels following sound therapy administration. Self-reported preference for one sound over another did not correlate with changes in tinnitus.Conclusions: Modeled under an adaptation level theory framework of tinnitus perception, the results indicate that the introduction of broadband noise shifts internal adaptation level weighting away from the tinnitus signal, reducing tinnitus magnitude. Nature sounds may modify the affective components of tinnitus via a secondary, residual pathway, but this appears to be less important for sound effectiveness. The different rates of adaptation to broadband noise and nature sound by the auditory system may explain the different tinnitus loudness level matches. In addition to group effects there also appears to be a great deal of individual variation. A sound therapy framework based on adaptation level theory is proposed that accounts for individual variation in preference and response to sound.Clinical Trial Registration:www.anzctr.org.au, identifier #12616000742471

    A State-of-the-Art Review: Personalization of Tinnitus Sound Therapy

    No full text
    Background: There are several established, and an increasing number of putative, therapies using sound to treat tinnitus. There appear to be few guidelines for sound therapy selection and application.Aim: To review current approaches to personalizing sound therapy for tinnitus.Methods: A “state-of-the-art” review (Grant and Booth, 2009) was undertaken to answer the question: how do current sound-based therapies for tinnitus adjust for tinnitus heterogeneity? Scopus, Google Scholar, Embase and PubMed were searched for the 10-year period 2006–2016. The search strategy used the following key words: “tinnitus” AND “sound” AND “therapy” AND “guidelines” OR “personalized” OR “customized” OR “individual” OR “questionnaire” OR “selection.” The results of the review were cataloged and organized into themes.Results: In total 165 articles were reviewed in full, 83 contained sufficient details to contribute to answering the study question. The key themes identified were hearing compensation, pitched-match therapy, maskability, reaction to sound and psychosocial factors. Although many therapies mentioned customization, few could be classified as being personalized. Several psychoacoustic and questionnaire-based methods for assisting treatment selection were identified.Conclusions: Assessment methods are available to assist clinicians to personalize sound-therapy and empower patients to be active in therapy decision-making. Most current therapies are modified using only one characteristic of the individual and/or their tinnitus

    A feasibility study of predictable and unpredictable surf-like sounds for tinnitus therapy using personal music players

    No full text
    <p><b>Objective:</b> To evaluate the feasibility of predictable or unpredictable amplitude-modulated sounds for tinnitus therapy.</p> <p><b>Design:</b> The study consisted of two parts. (1) An adaptation experiment. Loudness level matches and rating scales (10-point) for loudness and distress were obtained at a silent baseline and at the end of three counterbalanced 30-min exposures (silence, predictable and unpredictable). (2) A qualitative 2-week sound therapy feasibility trial. Participants took home a personal music player (PMP).</p> <p><b>Study sample:</b> Part 1: 23 individuals with chronic tinnitus and part 2: seven individuals randomly selected from Part 1.</p> <p><b>Results:</b> Self-reported tinnitus loudness and annoyance were significantly lower than baseline ratings after acute unpredictable sound exposure. Tinnitus annoyance ratings were also significantly lower than the baseline but the effect was small. The feasibility trial identified that participant preferences for sounds varied. Three participants did not obtain any benefit from either sound. Three participants preferred unpredictable compared to predictable sounds. Some participants had difficulty using the PMP, the average self-report hours of use were low (less <1 h/day).</p> <p><b>Conclusions:</b> Unpredictable surf-like sounds played using a PMP is a feasible tinnitus treatment. Further work is required to improve the acceptance of the sound and ease of PMP use.</p

    The effects of positive visualization with and without sound on sleep actigraphy measures in a small sample of tinnitus patients

    No full text
    BackgroundTinnitus is a common oto-neurological disorder associated with sleep disturbances. This research explored visualization and visualization reinforced with nature sounds as an acute therapy for sleep disturbance in people with tinnitus.MethodsTwelve adults with bothersome tinnitus and sleep disturbances participated in a randomized cross-over design in which measurements of tinnitus perception (rating scales), anxiety/depression (Hospital Anxiety and Depression Scale), attention (Attention and Performance Self-Assessment), and sleep quality (sleep diary and actigraphy—automated estimates of total sleep time, sleep onset latency, sleep fragmentation, and wake after sleep onset) were undertaken at baseline and repeated with therapy. The visualization task was 30 min in duration and was performed every night before sleep. The visualization with sound reinforcement task added nature sounds played overnight.ResultsSleep onset latency analyzed using the sleep diary normalized actigraphy was significantly reduced with both interventions (visualization reduced by 60 min and visualization with sound reinforcement reduced by 70 min). None of the other sleep quality markers demonstrated a statistically significant change. Self-reported attention ability significantly improved with visualization. Of the participants, 90% were able to consistently complete actigraphy measures over the 3 weeks of the study, and 75% kept sleep diaries.ConclusionSleep onset time was reduced with visualization

    Behavioral Outcomes and Neural Network Modeling of a Novel, Putative, Recategorization Sound Therapy

    No full text
    The mechanisms underlying sound’s effect on tinnitus perception are unclear. Tinnitus activity appears to conflict with perceptual expectations of “real” sound, resulting in it being a salient signal. Attention diverted towards tinnitus during the later stages of object processing potentially disrupts high-order auditory streaming, and its uncertain nature results in negative psychological responses. This study investigated the benefits and neurophysiological basis of passive perceptual training and informational counseling to recategorize phantom perception as a more real auditory object. Specifically, it examined underlying psychoacoustic correlates of tinnitus and the neural activities associated with tinnitus auditory streaming and how malleable these are to change with targeted intervention. Eighteen participants (8 females, 10 males, mean age = 61.6 years) completed the study. The study consisted of 2 parts: (1) An acute exposure over 30 min to a sound that matched the person’s tinnitus (Tinnitus Avatar) that was cross-faded to a selected nature sound (Cicadas, Fan, Water Sound/Rain, Birds, Water and Bird). (2) A chronic exposure for 3 months to the same “morphed” sound. A brain-inspired spiking neural network (SNN) architecture was used to model and compare differences between electroencephalography (EEG) patterns recorded prior to morphing sound presentation, during, after (3-month), and post-follow-up. Results showed that the tinnitus avatar generated was a good match to an individual’s tinnitus as rated on likeness scales and was not rated as unpleasant. The five environmental sounds selected for this study were also rated as being appropriate matches to individuals’ tinnitus and largely pleasant to listen to. There was a significant reduction in the Tinnitus Functional Index score and subscales of intrusiveness of the tinnitus signal and ability to concentrate with the tinnitus trial end compared to baseline. There was a significant decrease in how strong the tinnitus signal was rated as well as ratings of how easy it was to ignore the tinnitus signal on severity rating scales. Qualitative analysis found that the environmental sound interacted with the tinnitus in a positive way, but participants did not experience change in severity, however, characteristics of tinnitus, including pitch and uniformity of sound, were reported to change. The results indicate the feasibility of the computational SNN method and preliminary evidence that the sound exposure may change activation of neural tinnitus networks and greater bilateral hemispheric involvement as the sound morphs over time into natural environmental sound; particularly relating to attention and discriminatory judgments (dorsal attention network, precentral gyrus, ventral anterior network). This is the first study that attempts to recategorize tinnitus using passive auditory training to a sound that morphs from resembling the person’s tinnitus to a natural sound. These findings will be used to design future-controlled trials to elucidate whether the approach used differs in effect and mechanism from conventional Broadband Noise (BBN) sound therapy
    corecore