27 research outputs found

    A founder CEP120 mutation in Jeune asphyxiating thoracic dystrophy expands the role of centriolar proteins in skeletal ciliopathies.

    Get PDF
    Jeune asphyxiating thoracic dystrophy (JATD) is a skeletal dysplasia characterized by a small thoracic cage and a range of skeletal and extra-skeletal anomalies. JATD is genetically heterogeneous with at least nine genes identified, all encoding ciliary proteins, hence the classification of JATD as a skeletal ciliopathy. Consistent with the observation that the heterogeneous molecular basis of JATD has not been fully determined yet, we have identified two consanguineous Saudi families segregating JATD who share a single identical ancestral homozygous haplotype among the affected members. Whole-exome sequencing revealed a single novel variant within the disease haplotype in CEP120, which encodes a core centriolar protein. Subsequent targeted sequencing of CEP120 in Saudi and European JATD cohorts identified two additional families with the same missense mutation. Combining the four families in linkage analysis confirmed a significant genome-wide linkage signal at the CEP120 locus. This missense change alters a highly conserved amino acid within CEP120 (p.Ala199Pro). In addition, we show marked reduction of cilia and abnormal number of centrioles in fibroblasts from one affected individual. Inhibition of the CEP120 ortholog in zebrafish produced pleiotropic phenotypes characteristic of cilia defects including abnormal body curvature, hydrocephalus, otolith defects and abnormal renal, head and craniofacial development. We also demonstrate that in CEP120 morphants, cilia are shortened in the neural tube and disorganized in the pronephros. These results are consistent with aberrant CEP120 being implicated in the pathogenesis of JATD and expand the role of centriolar proteins in skeletal ciliopathies

    De Novo Mutations in FOXJ1 Result in a Motile Ciliopathy with Hydrocephalus and Randomization of Left/Right Body Asymmetry

    Get PDF
    Hydrocephalus is one of the most prevalent form of developmental central nervous system (CNS) malformations. Cerebrospinal fluid (CSF) flow depends on both heartbeat and body movement. Furthermore, it has been shown that CSF flow within and across brain ventricles depends on cilia motility of the ependymal cells lining the brain ventricles, which play a crucial role to maintain patency of the narrow sites of CSF passage during brain formation in mice. Using whole-exome and whole-genome sequencing, we identified an autosomal-dominant cause of a distinct motile ciliopathy related to defective ciliogenesis of the ependymal cilia in six individuals. Heterozygous de novo mutations in FOXJ1, which encodes a well-known member of the forkhead transcription factors important for ciliogenesis of motile cilia, cause a motile ciliopathy that is characterized by hydrocephalus internus, chronic destructive airway disease, and randomization of left/right body asymmetry. Mutant respiratory epithelial cells are unable to generate a fluid flow and exhibit a reduced number of cilia per cell, as documented by high-speed video microscopy (HVMA), transmission electron microscopy (TEM), and immunofluorescence analysis (IF). TEM and IF demonstrate mislocalized basal bodies. In line with this finding, the focal adhesion protein PTK2 displays aberrant localization in the cytoplasm of the mutant respiratory epithelial cells

    The more we know, the more we have to discover: an exciting future for understanding cilia and ciliopathies

    Get PDF
    Contains fulltext : 154216.pdf (publisher's version ) (Open Access)The Cilia 2014 conference was organised by four European networks: the Ciliopathy Alliance, the Groupement de Recherche CIL, the Nordic Cilia and Centrosome Network and the EU FP7 programme SYSCILIA. More than 400 delegates from 27 countries gathered at the Institut Pasteur conference centre in Paris, including 30 patients and patient representatives. The meeting offered a unique opportunity for exchange between different scientific and medical communities. Major highlights included new discoveries about the roles of motile and immotile cilia during development and homeostasis, the mechanism of cilium construction, as well as progress in diagnosis and possible treatment of ciliopathies. The contributions to the cilia field of flagellated infectious eukaryotes and of systems biology were also presented

    Mechanical loading inhibits cartilage inflammatory signalling via an HDAC6 and IFT-dependent mechanism regulating primary cilia elongation

    No full text
    Objective: physiological mechanical loading reduces inflammatory signalling in numerous cell types including articular chondrocytes however the mechanism responsible remains unclear. This study investigates the role of chondrocyte primary cilia and associated intraflagellar transport (IFT) in the mechanical regulation of interleukin-1β (IL-1β) signalling.Design: isolated chondrocytes and cartilage explants were subjected to cyclic mechanical loading in the presence and absence of the cytokine IL-1β. Nitric oxide (NO) and prostaglandin E2 (PGE2) release were used to monitor IL-1β signalling whilst Sulphated glycosaminoglycan (sGAG) release provided measurement of cartilage degradation. Measurements were made of HDAC6 activity and tubulin polymerisation and acetylation. Effects on primary cilia were monitored by confocal and super resolution microscopy. Involvement of IFT was analysed using ORPK cells with hypomorphic mutation of IFT88.Results: mechanical loading suppressed NO and PGE2 release and prevented cartilage degradation. Loading activated HDAC6 and disrupted tubulin acetylation and cilia elongation induced by IL-1β. HDAC6 inhibition with tubacin blocked the anti-inflammatory effects of loading and restored tubulin acetylation and cilia elongation. Hypomorphic mutation of IFT88 reduced IL-1β signalling and abolished the anti-inflammatory effects of loading indicating the mechanism is IFT-dependent. Loading reduced the pool of non-polymerised tubulin which was replicated by taxol which also mimicked the anti-inflammatory effects of mechanical loading and prevented cilia elongation.Conclusions: this study reveals that mechanical loading suppresses inflammatory signalling, partially dependent on IFT, by activation of HDAC6 and post transcriptional modulation of tubulin

    Mutations in CCDC39 and CCDC40 are a major cause of primary ciliary dyskinesia with microtubule disorganisation

    No full text
    Primary ciliary dyskinesia (PCD) is a genetically heterogeneous inherited disorder characterised by recurrent respiratory tract infections, bronchiectasis and subfertility which arises from cilia/sperm dysmotility associated with axonemal ultrastructural abnormalities. Laterality is randomized with ~50% of patients having situs inversus. Up to 15% of PCD cases show perturbation of the 9+2 microtubule structure and loss of the inner dynein arms, and these have tended to be referred to as ‘radial spoke defect’ cases. The radial spokes are essential for axoneme motility, mediating signal transduction between the central microtubular pair and dynein arm motors. Two genes causing this specific ultrastructural defect are known: CCDC39 (Merveille et. al., Nat Genet. 2011 43:72-8) and CCDC40 (Becker-Heck et. al. Nat Genet. 2011 43:79-84). We sequenced these genes in 22 PCD families with an ultrastructural defect involving microtubule disorganisation, either with or without accompanying loss of the inner dynein arms. We found recesively inherited CCDC39 mutations in 8/22 families and CCDC40 mutations in 7/22 families in the cohort, jointly accounting for a remarkable 68% (15/22) of families. The majority of CCDC39 and CCDC40 mutations were nonsense or frameshift resulting in early protein truncation, predicted to cause major disruption to the axoneme. Furthermore, there was a preponderance of homozygous mutations accounting for disease, even in families from outbred populations. Our results highlight the key role of the CCDC39 and CCDC40 genes in PCD with radial spoke defect, and suggest that disease is associated with complete protein loss (null alleles). These two genes represent prime targets for genetic testing in this disease phenotype. Work is in progress to identify the disease genes in the remaining patients within this subgroup, by next generation whole exome sequencing
    corecore