4 research outputs found

    Virus Movements on the Plasma Membrane Support Infection and Transmission between Cells

    Get PDF
    How viruses are transmitted across the mucosal epithelia of the respiratory, digestive, or excretory tracts, and how they spread from cell to cell and cause systemic infections, is incompletely understood. Recent advances from single virus tracking experiments have revealed conserved patterns of virus movements on the plasma membrane, including diffusive motions, drifting motions depending on retrograde flow of actin filaments or actin tail formation by polymerization, and confinement to submicrometer areas. Here, we discuss how viruses take advantage of cellular mechanisms that normally drive the movements of proteins and lipids on the cell surface. A concept emerges where short periods of fast diffusive motions allow viruses to rapidly move over several micrometers. Coupling to actin flow supports directional transport of virus particles during entry and cell-cell transmission, and local confinement coincides with either nonproductive stalling or infectious endocytic uptake. These conserved features of virus–host interactions upstream of infectious entry offer new perspectives for anti-viral interference

    Inhibition of Anchorage-independent Growth of Transformed NIH3T3 Cells by Epithelial Protein Lost in Neoplasm (EPLIN) Requires Localization of EPLIN to Actin Cytoskeleton

    No full text
    Epithelial protein lost in neoplasm (EPLIN) is a cytoskeleton-associated protein characterized by the presence of a single centrally located lin-11, isl-1, and mec-3 (LIM) domain. We have reported previously that EPLIN is down-regulated in transformed cells. In this study, we have investigated whether ectopic expression of EPLIN affects transformation. In untransformed NIH3T3 cells, retroviral-mediated transduction of EPLIN did not alter the cell morphology or growth. NIH3T3 cells expressing EPLIN, however, failed to form colonies when transformed by the activated Cdc42 or the chimeric nuclear oncogene EWS/Fli-1. This suppression of anchorage-independent growth was not universal because EPLIN failed to inhibit the colony formation of Ras-transformed cells. Interestingly, the localization of EPLIN to the actin cytoskeleton was maintained in the EWS/Fli-1– or Cdc42-transformed cells, but not in Ras-transformed cells where it was distributed heterogeneously in the cytoplasm. Using truncated EPLIN constructs, we demonstrated that the NH(2)-terminal region of EPLIN is necessary for both the localization of EPLIN to the actin cytoskeleton and suppression of anchorage-independent growth of EWS/Fli-1–transformed cells. The LIM domain or the COOH-terminal region of EPLIN could be deleted without affecting its cytoskeletal localization or ability to suppress anchorage-dependent growth. Our study indicates EPLIN may function in growth control by associating with and regulating the actin cytoskeleton

    Target Selection and Validation in Drug Discovery

    No full text
    corecore