17 research outputs found

    Facility for studying the effects of elevated carbon dioxide concentration and increased temperature on crops

    Get PDF
    The requirements for the experimental study of the effects of global climate change conditions on plants are outlined. A semi-controlled plant growth facility is described which allows the study of elevated CO2 and temperature, and their interaction on the growth of plants under radiation and temperature conditions similar to the field. During an experiment on winter wheat (cv. Mercia), which ran from December 1990 through to August 1991, the facility maintained mean daytime CO2 concentrations of 363 and 692 cm3 m-3 for targets of 350 and 700 cm3 m-3 respectively. Temperatures were set to follow outside ambient or outside ambient +4-degrees-C, and hourly means were within 0.5-degrees-C of the target for 92% of the time for target temperatures greater than 6-degrees-C. Total photosynthetically active radiation incident on the crop (solar radiation supplemented by artifical light with natural photoperiod) was 2% greater than the total measured outside over the same period

    Interacting effects of CO2 concentration, temperature and nitrogen supply on the photosynthesis and composition of winter wheat leaves

    No full text
    Winter wheat (Triticum aestivum L., cv. Mercia) was grown at two different atmospheric CO, concentrations (350 and 700 mu mol mol(-1)) two temperatures [ambient temperature (i.e. tracking the open air) and ambient +4 degrees C] and two rates of nitrogen supply (equivalent to 489 kg ha(-1) and 87 kg ha(-1)). Leaves grown at 700 mu mol mol(-1) CO2 had slightly greater photosynthetic capacity (10% mean increase over the experiment) than those grown at ambient CO2 concentration, but there were no differences in carboxylation efficiency or apparent quantum yield. The amounts of chlorophyll, soluble protein and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) per unit leaf area did not change with long-term exposure to elevated CO2 concentration. Thus winter wheat, grown under simulated field conditions, for which total biomass was large compared to normal field production, did not experience loss of components of the photosynthetic system or loss of photosynthetic competence with elevated CO2 concentration. However, nitrogen supply and temperature had large effects on photosynthetic characteristics but did not interact with elevated CO2 concentration. Nitrogen deficiency resulted in decreases in the contents of protein, including Rubisco, and chlorophyll, and decreased photosynthetic capacity and carboxylation efficiency. An increase in temperature also reduced these components and shortened the effective life of the leaves, reducing the duration of high photosynthetic capacity

    The effects of elevated temperature and atmospheric carbon dioxide concentration on the quality of grain lipids in wheat (Triticum aestivum L.) grown at two levels of nitrogen application

    No full text
    Wheat plants were cultivated under growth regimes combining two temperatures (ambient and 4 degrees C above ambient temperature) with two concentrations of carbon dioxide (350 and 700 mu mol mol(-1)) and two nitrogen fertilizer applications (high and low), The aim of this study was to define any changes in the acyl lipid composition of wheat grains which could result from alterations in the growth conditions, Qualitative and quantitative changes were observed in both non-starch and starch lipid fractions, Temperature was by far the most influential growth factor, although interactions between all three growth conditions occurred, as confirmed by analysis of variance, Growth at elevated temperatures had the general effect of reducing the amounts of accumulated lipids, particularly non-polar lipids (1322mg fatty acids per 100g fresh weight at ambient temperatures as opposed to 777mg fatty acids per 100 g fresh weight at 4 degrees C above ambient temperatures), There were changes in the proportions of the major non-starch as well as the starch lipids, In the former category, non-polar lipids (principally triacylglycerols), the membrane glycosylglycerides and phosphatidylcholine were the main constituents, whereas in the starch lipids, lysophosphatidylcholine and lysophosphatidylethanolamine represented over 70% of the total, Depending on the growth conditions, the percentages of lipids such as monogalactosyldiacylglycerol, digalactosyldiacylglycerol and phosphatidylcholine (non-starch) or the starch lysophosphatidylethanolamine varied 2-fold or more, Significant changes in the acyl composition of individual lipids were also observed, most often in the proportions of palmitate, oleate and linoleate, The observed alterations in wheat lipids are likely to affect the properties of any flours derived from grain grown under climate change conditions
    corecore