526 research outputs found

    Chiral Behaviour of the Rho Meson in Lattice QCD

    Get PDF
    In order to guide the extrapolation of the mass of the rho meson calculated in lattice QCD with dynamical fermions, we study the contributions to its self-energy which vary most rapidly as the quark mass approaches zero; from the processes ρωπ\rho \to \omega \pi and ρππ\rho \to \pi \pi. It turns out that in analysing the most recent data from CP-PACS it is crucial to estimate the self-energy from ρππ\rho \to \pi \pi using the same grid of discrete momenta as included implicitly in the lattice simulation. The correction associated with the continuum, infinite volume limit can then be found by calculating the corresponding integrals exactly. Our error analysis suggests that a factor of 10 improvement in statistics at the lowest quark mass for which data currently exists would allow one to determine the physical rho mass to within 5%. Finally, our analysis throws new light on a long-standing problem with the J-parameter.Comment: 13 pages, 7 figures. Full analytic forms of the self-energies are included and a correction in the omega-pi self-energ

    Cassini observations of ionospheric plasma in Saturn's magnetotail lobes

    No full text
    Studies of Saturn's magnetosphere with the Cassini mission have established the importance of Enceladus as the dominant mass source for Saturn's magnetosphere. It is well known that the ionosphere is an important mass source at Earth during periods of intense geomagnetic activity, but lesser attention has been dedicated to study the ionospheric mass source at Saturn. In this paper we describe a case study of data from Saturn's magnetotail, when Cassini was located at ? 2200 h Saturn local time at 36 RS from Saturn. During several entries into the magnetotail lobe, tailward flowing cold electrons and a cold ion beam were observed directly adjacent to the plasma sheet and extending deeper into the lobe. The electrons and ions appear to be dispersed, dropping to lower energies with time. The composition of both the plasma sheet and lobe ions show very low fluxes (sometimes zero within measurement error) of water group ions. The magnetic field has a swept-forward configuration which is atypical for this region, and the total magnetic field strength is larger than expected at this distance from the planet. Ultraviolet auroral observations show a dawn brightening, and upstream heliospheric models suggest that the magnetosphere is being compressed by a region of high solar wind ram pressure. We interpret this event as the observation of ionospheric outflow in Saturn's magnetotail. We estimate a number flux between (2.95 ± 0.43) × 109 and (1.43 ± 0.21) × 1010 cm?2 s?1, 1 or about 2 orders of magnitude larger than suggested by steady state MHD models, with a mass source between 1.4 ×102 and 1.1 ×103 kg/s. After considering several configurations for the active atmospheric regions, we consider as most probable the main auroral oval, with associated mass source between 49.7 ±13.4 and 239.8 ±64.8 kg/s for an average auroral oval, and 10 ±4 and 49 ±23 kg/s for the specific auroral oval morphology found during this event. It is not clear how much of this mass is trapped within the magnetosphere and how much is lost to the solar wind

    The Quark-Photon Vertex and the Pion Charge Radius

    Full text link
    The rainbow truncation of the quark Dyson-Schwinger equation is combined with the ladder Bethe-Salpeter equation for the dressed quark-photon vertex to study the low-momentum behavior of the pion electromagnetic form factor. With model gluon parameters previously fixed by the pion mass and decay constant, the pion charge radius rπr_\pi is found to be in excellent agreement with the data. When the often-used Ball-Chiu Ansatz is used to construct the quark-photon vertex directly from the quark propagator, less than half of rπ2r_\pi^2 is generated. The remainder of rπ2r^2_\pi is seen to be attributable to the presence of the ρ\rho-pole in the solution of the ladder Bethe-Salpeter equation.Comment: 21 pages, 9 figure

    Competition of charge, orbital, and ferromagnetic correlations in layered manganites

    Full text link
    The competition of charge, orbital, and ferromagnetic interactions in layered manganites is investigated by magneto-Raman scattering spectroscopy. We find that the colossal magnetoresistance effect in the layered compounds results from the interplay of the orbital and ferromagnetic double-exchange correlations. Inelastic scattering by charge-order fluctuations dominates the quasiparticle dynamics in the ferromagnetic-metal state. The scattering is suppressed at low frequencies, consistent with the opening of a charge-density wave pseudogap.Comment: 10 pages, 4 figure

    Ballistic electron transport in stubbed quantum waveguides: experiment and theory

    Full text link
    We present results of experimental and theoretical investigations of electron transport through stub-shaped waveguides or electron stub tuners (ESTs) in the ballistic regime. Measurements of the conductance G as a function of voltages, applied to different gates V_i (i=bottom, top, and side) of the device, show oscillations in the region of the first quantized plateau which we attribute to reflection resonances. The oscillations are rather regular and almost periodic when the height h of the EST cavity is small compared to its width. When h is increased, the oscillations become less regular and broad depressions in G appear. A theoretical analysis, which accounts for the electrostatic potential formed by the gates in the cavity region, and a numerical computation of the transmission probabilities successfully explains the experimental observations. An important finding for real devices, defined by surface Schottky gates, is that the resonance nima result from size quantization along the transport direction of the EST.Comment: Text 20 pages in Latex/Revtex format, 11 Postscript figures. Phys. Rev. B,in pres

    Small-polaron hopping conductivity in bilayer manganite La1.2_{1.2}Sr1.8_{1.8}Mn2_{2}O7_{7}

    Full text link
    We report anisotropic resistivity measurements on a La1.2_{1.2}Sr1.8_{1.8}Mn2_{2}O7_{7} single crystal over a temperature TT range from 2 to 400 K and in magnetic fields HH up to 14 T. For T218T\geq 218 K, the temperature dependence of the zero-field in-plane ρab(T)\rho_{ab}(T) resistivity obeys the adiabatic small polaron hopping mechanism, while the out-of-plane ρc(T)\rho_{c}(T) resistivity can be ascribed by an Arrhenius law with the same activation energy. Considering the magnetic character of the polarons and the close correlation between the resistivity and magnetization, we developed a model which allows the determination of ρab,c(H,T)\rho_{ab,c}(H,T). The excellent agreement of the calculations with the measurements indicates that small polarons play an essential role in the electrical transport properties in the paramagnetic phase of bilayer manganites.Comment: 4 pages, 3 figures, to appear in Physical Review

    Low-temperature electrical transport in bilayer manganite La1.2_{1.2}Sr1.8_{1.8}Mn2_{2}O7_{7}

    Full text link
    The temperature TT and magnetic field HH dependence of anisotropic in-plane ρab\rho_{ab} and out-of-plane ρc\rho_{c} resistivities have been investigated in single crystals of the bilayer manganite La1.2_{1.2}Sr1.8_{1.8}Mn2_{2}O7_{7}. Below the Curie transition temperature Tc=T_c= 125 K, ρab\rho_{ab} and ρc\rho_{c} display almost the same temperature dependence with an up-turn around 50 K. In the metallic regime (50 K T\leq T \leq 110 K), both ρab(T)\rho_{ab}(T) and ρc(T)\rho_{c}(T) follow a T9/2T^{9/2} dependence, consistent with the two-magnon scattering. We found that the value of the proportionality coefficient BabfitB_{ab}^{fit} and the ratio of the exchange interaction Jab/JcJ_{ab}/J_c obtained by fitting the data are in excellent agreement with the calculated BabB_{ab} based on the two-magnon model and Jab/JcJ_{ab}/J_c deduced from neutron scattering, respectively. This provides further support for this scattering mechanism. At even lower TT, in the non-metallic regime (T<T< 50 K), {\it both} the in-plane σab\sigma_{ab} and out-of-plane σc\sigma_{c} conductivities obey a T1/2T^{1/2} dependence, consistent with weak localization effects. Hence, this demonstrates the three-dimensional metallic nature of the bilayer manganite La1.2_{1.2}Sr1.8_{1.8}Mn2_{2}O7_{7} at T<TcT<T_c.Comment: 7 pages and 5 figures, accepted for publication in Phys. Rev.

    Isospin-Violating Meson-Nucleon Vertices as an Alternate Mechanism of Charge-Symmetry Breaking

    Get PDF
    We compute isospin-violating meson-nucleon coupling constants and their consequent charge-symmetry-breaking nucleon-nucleon potentials. The couplings result from evaluating matrix elements of quark currents between nucleon states in a nonrelativistic constituent quark model; the isospin violations arise from the difference in the up and down constituent quark masses. We find, in particular, that isospin violation in the omega-meson--nucleon vertex dominates the class IV CSB potential obtained from these considerations. We evaluate the resulting spin-singlet--triplet mixing angles, the quantities germane to the difference of neutron and proton analyzing powers measured in elastic np\vec{n}-\vec{p} scattering, and find them commensurate to those computed originally using the on-shell value of the ρ\rho-ω\omega mixing amplitude. The use of the on-shell ρ\rho-ω\omega mixing amplitude at q2=0q^2=0 has been called into question; rather, the amplitude is zero in a wide class of models. Our model possesses no contribution from ρ\rho-ω\omega mixing at q2=0q^2=0, and we find that omega-meson exchange suffices to explain the measured npn-p analyzing power difference~at~183 MeV.Comment: 20 pages, revtex, 3 uuencoded PostScript figure
    corecore