63 research outputs found

    The impact of intraoperative fluid management during laparoscopic donor nephrectomy on donor and recipient outcomes

    Full text link
    BackgroundIntraoperative fluid management during laparoscopic donor nephrectomy (LDN) may have a significant effect on donor and recipient outcomes. We sought to quantify variability in fluid management and investigate its impact on donor and recipient outcomes.MethodsA retrospective review of patients who underwent LDN from July 2011 to January 2016 with paired kidney recipients at a single center was performed. Patients were divided into tertiles of intraoperative fluid management (standard, high, and aggressive). Donor and recipient demographics, intraoperative data, and postoperative outcomes were analyzed.ResultsOverall, 413 paired kidney donors and recipients were identified. Intraoperative fluid management (mL/h) was highly variable with no correlation to donor weight (kg) (R = 0.017). The aggressive fluid management group had significantly lower recipient creatinine levels on postoperative day 1. However, no significant differences were noted in creatinine levels out to 6 months between groups. No significant differences were noted in recipient postoperative complications, graft loss, and death. There was a significant increase (P < 0.01) in the number of total donor complications in the aggressive fluid management group.ConclusionsAggressive fluid management during LDN does not improve recipient outcomes and may worsen donor outcomes compared to standard fluid management.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149691/1/ctr13542_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149691/2/ctr13542.pd

    Search for Extended Sources of Neutrino Emission in the Galactic Plane with IceCube

    Full text link
    The Galactic plane, harboring a diffuse neutrino flux, is a particularly interesting target to study potential cosmic-ray acceleration sites. Recent gamma-ray observations by HAWC and LHAASO have presented evidence for multiple Galactic sources that exhibit a spatially extended morphology and have energy spectra continuing beyond 100 TeV. A fraction of such emission could be produced by interactions of accelerated hadronic cosmic rays, resulting in an excess of high-energy neutrinos clustered near these regions. Using 10 years of IceCube data comprising track-like events that originate from charged-current muon neutrino interactions, we perform a dedicated search for extended neutrino sources in the Galaxy. We find no evidence for time-integrated neutrino emission from the potential extended sources studied in the Galactic plane. The most significant location, at 2.6σ\sigma post-trials, is a 1.7^\circ sized region coincident with the unidentified TeV gamma-ray source 3HWC J1951+266. We provide strong constraints on hadronic emission from several regions in the Galaxy.Comment: 13 pages, 4 figures, 5 tables including an appendix. Accepted for publication in Astrophysical Journa

    Search for Continuous and Transient Neutrino Emission Associated with IceCube's Highest-Energy Tracks: An 11-Year Analysis

    Full text link
    IceCube alert events are neutrinos with a moderate-to-high probability of having astrophysical origin. In this study, we analyze 11 years of IceCube data and investigate 122 alert events and a selection of high-energy tracks detected between 2009 and the end of 2021. This high-energy event selection (alert events + high-energy tracks) has an average probability of 0.5\geq 0.5 to be of astrophysical origin. We search for additional continuous and transient neutrino emission within the high-energy events' error regions. We find no evidence for significant continuous neutrino emission from any of the alert event directions. The only locally significant neutrino emission is the transient emission associated with the blazar TXS~0506+056, with a local significance of 3σ 3 \sigma, which confirms previous IceCube studies. When correcting for 122 test positions, the global p-value is 0.1560.156 and is compatible with the background hypothesis. We constrain the total continuous flux emitted from all 122 test positions at 100~TeV to be below 1.2×10151.2 \times 10^{-15}~(TeV cm2^2 s)1^{-1} at 90% confidence assuming an E2E^{-2} spectrum. This corresponds to 4.5% of IceCube's astrophysical diffuse flux. Overall, we find no indication that alert events, in general, are linked to lower-energetic continuous or transient neutrino emission.Comment: Accepted by Ap

    Search for Extended Sources of Neutrino Emission in the Galactic Plane with IceCube

    Get PDF

    TXS 0506+056 with Updated IceCube Data

    Get PDF
    Past results from the IceCube Collaboration have suggested that the blazar TXS 0506+056 is a potential source of astrophysical neutrinos. However, in the years since there have been numerous updates to event processing and reconstruction, as well as improvements to the statistical methods used to search for astrophysical neutrino sources. These improvements in combination with additional years of data have resulted in the identification of NGC 1068 as a second neutrino source candidate. This talk will re-examine time-dependent neutrino emission from TXS 0506+056 using the most recent northern-sky data sample that was used in the analysis of NGC 1068. The results of using this updated data sample to obtain a significance and flux fit for the 2014 TXS 0506+056 "untriggered" neutrino flare are reported

    Conditional normalizing flows for IceCube event reconstruction

    Get PDF

    Galactic Core-Collapse Supernovae at IceCube: “Fire Drill” Data Challenges and follow-up

    Get PDF
    The next Galactic core-collapse supernova (CCSN) presents a once-in-a-lifetime opportunity to make astrophysical measurements using neutrinos, gravitational waves, and electromagnetic radiation. CCSNe local to the Milky Way are extremely rare, so it is paramount that detectors are prepared to observe the signal when it arrives. The IceCube Neutrino Observatory, a gigaton water Cherenkov detector below the South Pole, is sensitive to the burst of neutrinos released by a Galactic CCSN at a level >10σ. This burst of neutrinos precedes optical emission by hours to days, enabling neutrinos to serve as an early warning for follow-up observation. IceCube\u27s detection capabilities make it a cornerstone of the global network of neutrino detectors monitoring for Galactic CCSNe, the SuperNova Early Warning System (SNEWS 2.0). In this contribution, we describe IceCube\u27s sensitivity to Galactic CCSNe and strategies for operational readiness, including "fire drill" data challenges. We also discuss coordination with SNEWS 2.0

    All-Energy Search for Solar Atmospheric Neutrinos with IceCube

    Get PDF
    The interaction of cosmic rays with the solar atmosphere generates a secondary flux of mesons that decay into photons and neutrinos – the so-called solar atmospheric flux. Although the gamma-ray component of this flux has been observed in Fermi-LAT and HAWC Observatory data, the neutrino component remains undetected. The energy distribution of those neutrinos follows a soft spectrum that extends from the GeV to the multi-TeV range, making large Cherenkov neutrino telescopes a suitable for probing this flux. In this contribution, we will discuss current progress of a search for the solar neutrino flux by the IceCube Neutrino Observatory using all available data since 2011. Compared to the previous analysis which considered only high-energy muon neutrino tracks, we will additionally consider events produced by all flavors of neutrinos down to GeV-scale energies. These new events should improve our analysis sensitivity since the flux falls quickly with energy. Determining the magnitude of the neutrino flux is essential, since it is an irreducible background to indirect solar dark matter searches

    Searches for IceCube Neutrinos Coincident with Gravitational Wave Events

    Get PDF

    Recent neutrino oscillation results with the IceCube experiment

    Get PDF
    The IceCube South Pole Neutrino Observatory is a Cherenkov detector instrumented in a cubic kilometer of ice at the South Pole. IceCube’s primary scientific goal is the detection of TeV neutrino emissions from astrophysical sources. At the lower center of the IceCube array, there is a subdetector called DeepCore, which has a denser configuration that makes it possible to lower the energy threshold of IceCube and observe GeV-scale neutrinos, opening the window to atmospheric neutrino oscillations studies. Advances in physics sensitivity have recently been achieved by employing Convolutional Neural Networks to reconstruct neutrino interactions in the DeepCore detector. In this contribution, the recent IceCube result from the atmospheric muon neutrino disappearance analysis using the CNN-reconstructed neutrino sample are presented and compared to the existing worldwide measurements
    corecore