6 research outputs found

    Does improved oleic acid content due to marker-assisted introgression of ahFAD2 mutant alleles in peanuts alter its mineral and vitamin composition?

    Get PDF
    Peanuts (Arachis hypogaea L.) with high oleic acid content have extended shelf life and several health benefits. Oleic, linoleic, and palmitic acid contents in peanuts are regulated by ahFAD2A and ahFAD2B mutant alleles. In the present study, ahFAD2A and ahFAD2B mutant alleles from SunOleic 95R were introgressed into two popular peanut cultivars, GG-7 and TKG19A, followed by markers-assisted selection (MAS) and backcrossing (MABC). A total of 22 MAS and three MABC derived lines were developed with increased oleic acid (78–80%) compared to those of GG 7 (40%) and TKG 19A (50%). Peanut kernel mineral and vitamin composition remained unchanged, while potassium content was altered in high oleic ingression lines. Two introgression lines, HOMS Nos. 37 and 113 had over 10% higher pooled pod yield than respective best check varieties. More than 70% recurrent parent genome recovery was observed in HOMS-37 and HOMS-113 through recombination breeding. However, the absence of recombination in the vicinity of the target locus resulted in its precise introgression along with ample background genome recovery. Selected introgression lines could be released for commercial cultivation based on potential pod yield and oleic acid content

    Not Available

    No full text
    Not AvailablePeanut plays a key role to the livelihood of millions in the world especially in Arid and Semi-Arid regions. Peanut with high oleic acid content aids to increase shelf-life of peanut oil as well as food products and extends major health benefits to the consumers. In peanut, ahFAD2 gene controls quantity of two major fatty acids viz, oleic and linoleic acids. These two fatty acids together with palmitic acid constitute 90% fat composition in peanut and regulate the quality of peanut oil. Here, two ahfad2 alleles from SunOleic 95R were introgressed into ICGV 05141 using marker-assisted selection. Marker-assisted breeding effectively increased oleic acid and oleic to linoleic acid ratio in recombinant lines up to 44% and 30%, respectively as compared to ICGV 05141. In addition to improved oil quality, the recombinant lines also had superiority in pod yield together with desired pod/seed attributes. Realizing the health benefits and ever increasing demand in domestic and international market, the high oleic peanut recombinant lines will certainly boost the economical benefits to the Indian farmers in addition to ensuring availability of high oleic peanuts to the traders and industry.Not Availabl

    Steady expression of high oleic acid in peanut bred by marker-assisted backcrossing for fatty acid desaturase mutant alleles and its effect on seed germination along with other seedling traits.

    No full text
    Peanut (Arachis hypogaea L.) is an important nutrient-rich food legume and valued for its good quality cooking oil. The fatty acid content is the major determinant of the quality of the edible oil. The oils containing higher monounsaturated fatty acid are preferred for improved shelf life and potential health benefits. Therefore, a high oleic/linoleic fatty acid ratio is the target trait in an advanced breeding program. The two mutant alleles, ahFAD2A (on linkage group a09) and ahFAD2B (on linkage group b09) control fatty acid composition for higher oleic/linoleic ratio in peanut. In the present study, marker-assisted backcrossing was employed for the introgression of two FAD2 mutant alleles from SunOleic95R into the chromosome of ICGV06100, a high oil content peanut breeding line. In the marker-assisted backcrossing-introgression lines, a 97% increase in oleic acid, and a 92% reduction in linoleic acid content was observed in comparison to the recurrent parent. Besides, the oleic/linoleic ratio was increased to 25 with respect to the recurrent parent, which was only 1.2. The most significant outcome was the stable expression of oil-content, oleic acid, linoleic acid, and palmitic acid in the marker-assisted backcrossing-introgression lines over the locations. No significant difference was observed between high oleic and normal oleic in peanuts for seedling traits except germination percentage. In addition, marker-assisted backcrossing-introgression lines exhibited higher yield and resistance to foliar fungal diseases, i.e., late leaf spot and rust
    corecore