48 research outputs found

    T2-based temperature monitoring in bone marrow for MR-guided focused ultrasound.

    Get PDF
    BackgroundCurrent clinical protocols for MR-guided focused ultrasound (MRgFUS) treatment of osseous lesions, including painful bone metastases and osteoid osteomas, rely on measurement of the temperature change in adjacent muscle to estimate the temperature of the bone. The goal of this study was to determine if T2-based thermometry could be used to monitor the temperature change in bone marrow during focused ultrasound ablation of bone lesions.MethodsWe investigated the dependence of T2 on temperature in ex vivo bovine yellow bone marrow at 3T and studied the influence of acquisition parameters on the T2 measurements. We examined if T2 changes in red bone marrow caused by the ablation of ex vivo trabecular bone were reversible and measured the patterns of heating and tissue damage. The technique was validated during the ablation of intact ex vivo bone samples and an in vivo animal model.ResultsResults of the calibration experiment showed a linear relationship (7 ms/°C) between T2 change and temperature and could be used to quantify the temperature during heating of up to 60 °C. During trabecular bone ablation, we observed a linear relationship (5.7 ms per °C) between T2 and temperature during the heating stage of the experiment. After cool down, there was residual T2 elevation (~35 ms) in the ablated area suggesting irreversible tissue changes. In ex vivo and in vivo cortical bone ablation experiments, we observed an increase in T2 values in the marrow adjacent to the intersection of the cortical bone and the beam path. The in vivo experiment showed excellent correspondence between the area of T2 elevation in marrow during the ablation and the resulting non-enhancing area in the post-contrast images.ConclusionsIn this study, we have demonstrated that T2-based thermometry can be used in vivo to measure the heating in the marrow during bone ablation. The ability to monitor the temperature within the bone marrow allowed more complete visualization of the heat distribution into the bone, which is important for local lesion control

    Bone Material Analogues for PET/MRI Phantoms

    Full text link
    Purpose: To develop bone material analogues that can be used in construction of phantoms for simultaneous PET/MRI systems. Methods: Plaster was used as the basis for the bone material analogues tested in this study. It was mixed with varying concentrations of an iodinated CT contrast, a gadolinium-based MR contrast agent, and copper sulfate to modulate the attenuation properties and MRI properties (T1 and T2*). Attenuation was measured with CT and 68Ge transmission scans, and MRI properties were measured with quantitative ultrashort echo time pulse sequences. A proof-of-concept skull was created by plaster casting. Results: Undoped plaster has a 511 keV attenuation coefficient (~0.14 cm-1) similar to cortical bone (0.10-0.15 cm-1), but slightly longer T1 (~500 ms) and T2* (~1.2 ms) MR parameters compared to bone (T1 ~ 300 ms, T2* ~ 0.4 ms). Doping with the iodinated agent resulted in increased attenuation with minimal perturbation to the MR parameters. Doping with a gadolinium chelate greatly reduced T1 and T2*, resulting in extremely short T1 values when the target T2* values were reached, while the attenuation coefficient was unchanged. Doping with copper sulfate was more selective for T2* shortening and achieved comparable T1 and T2* values to bone (after 1 week of drying), while the attenuation coefficient was unchanged. Conclusions: Plaster doped with copper sulfate is a promising bone material analogue for a PET/MRI phantom, mimicking the MR properties (T1 and T2*) and 511 keV attenuation coefficient of human cortical bone

    Metal artifact suppression at the hip: diagnostic performance at 3.0 T versus 1.5 Tesla

    Full text link
    PurposeThis work aimed to compare the diagnostic performance of a metal artifact suppression sequence (MAVRIC-SL) for imaging of hip arthroplasties (HA) at 1.5 and 3 Tesla (T) field strength.MethodsEighteen patients (10 females; aged 27-74) with HA were examined at 3.0 and 1.5 T within 3 weeks. The sequence protocol included 3D-MAVRIC-SL PD (coronal), 3D-MAVRIC-SL STIR (axial), FSE T1, FSE PD and STIR sequences. Anatomical structures and pathological findings were assessed independently by two radiologists. Artifact extent and technical quality (image quality, fat saturation and geometric distortion) were also evaluated. Findings at 1.5 and 3.0 T were compared using a Wilcoxon signed rank test.ResultsWhile image quality was better at 1.5 T, visualization of anatomic structures and clinical abnormalities was not significantly different using the two field strengths (p > 0.05). Fat suppression and amount of artifacts were significantly better at 1.5 T (p  < 0.01). Inter- and intra-reader agreement for different anatomic details, image quality and visualization of abnormalities ranged from k = 0.62 to k = 1.00.ConclusionMAVRIC-SL at 1.5 T had a comparable diagnostic performance when compared MAVRIC-SL at 3.0 T; however, the higher field strength was associated with larger artifacts, limited image quality and worse fat saturation

    Magnetization‐prepared spoiled gradient‐echo snapshot imaging for efficient measurement of R2‐R1ρ in knee cartilage

    No full text
    PurposeTo validate the potential of quantifying R2 -R1ρ using one pair of signals with T1ρ preparation and T2 preparation incorporated to magnetization-prepared angle-modulated partitioned k-space spoiled gradient-echo snapshots (MAPSS) acquisition and to find an optimal preparation time (Tprep ) for in vivo knee MRI.MethodsBloch equation simulations were first performed to assess the accuracy of quantifying R2 -R1ρ using T1ρ - and T2 -prepared signals with an equivalent Tprep . For validation of this technique in comparison to the conventional approach that calculates R2 -R1ρ after estimating both T2 and T1ρ , phantom experiments and in vivo validation with five healthy subjects and five osteoarthritis patients were performed at a clinical 3T scanner.ResultsBloch equation simulations demonstrated that the accuracy of this efficient R2 -R1ρ quantification method and the optimal Tprep can be affected by image signal-to-noise ratio (SNR) and tissue relaxation times, but quantification can be closest to the reference with an around 25 ms Tprep for knee cartilage. Phantom experiments demonstrated that the proposed method can depict R2 -R1ρ changes with agarose gel concentration. With in vivo data, significant correlation was observed between cartilage R2 -R1ρ measured from the conventional and the proposed methods, and a Tprep of 25.6 ms provided the most agreement by Bland-Altman analysis. R2 -R1ρ was significantly lower in patients than in healthy subjects for most cartilage compartments.ConclusionAs a potential biomarker to indicate cartilage degeneration, R2 -R1ρ can be efficiently measured using one pair of T1ρ -prepared and T2 -prepared signals with an optimal Tprep considering cartilage relaxation times and image SNR
    corecore