42 research outputs found

    NFATc1 regulates the transcription of DNA damage-induced apoptosis suppressor

    Get PDF
    AbstractDNA damage induced apoptosis suppressor (DDIAS), or human Noxin (hNoxin), is strongly expressed in lung cancers. DDIAS knockdown induced apoptosis in non-small cell lung carcinoma A549 cells in response to DNA damage, indicating DDIAS as a potential therapeutic target in lung cancer. To understand the transcriptional regulation of DDIAS, we determined the transcription start site, promoter region, and transcription factor. We found that DDIAS transcription begins at nucleotide 212 upstream of the DDIAS translation start site. We cloned the DDIAS promoter region and identified NFAT2 as a major transcription factor (Im et al., 2016 [1]). We demonstrated that NFATc1 regulates DDIAS expression in both pancreatic cancer Panc-1 cells and lung cancer cells

    Human Adipose Tissue-Derived Mesenchymal Stem Cells Attenuate Atopic Dermatitis by Regulating the Expression of MIP-2, miR-122a-SOCS1 Axis, and Th1/Th2 Responses

    Get PDF
    The objective of this study was to investigate the effect of human adipose tissue-derived mesenchymal stem cells (AdMSCs) on atopic dermatitis (AD) in the BALB/c mouse model. The AdMSCs attenuated clinical symptoms associated with AD, decreased numbers of degranulated mast cells (MCs), IgE level, amount of histamine released, and prostaglandin E2 level. Atopic dermatitis increased the expression levels of cytokines/chemokines, such as interleukin-5 (IL-5), macrophage inflammatory protein-1ß (MIP-1ß), MIP-2, chemokine (C-C motif) ligand 5 (CCL5), and IL-17, in BALB/c mouse. The AdMSCs showed decreased expression levels of these cytokines in the mouse model of AD. In vivo downregulation of MIP-2 attenuated the clinical symptoms associated with AD. Atopic dermatitis increased the expression levels of hallmarks of allergic inflammation, induced interactions of FcRIβ with histone deacetylase 3 (HDAC3) and Lyn, increased ß-hexosaminidase activity, increased serum IgE level, and increased the amount of histamine released in an MIP-2-dependent manner. Downregulation of MIP-2 increased the levels of several miRNAs, including miR-122a-5p. Mouse miR-122a-5p mimic inhibited AD, while suppressor of cytokine signaling 1 (SOCS1), a predicted downstream target of miR-122a-5p, was required for AD. The downregulation of SOCS1 decreased the expression levels of MIP-2 and chemokine (C-X-C motif) ligand 13 (CXCL13) in the mouse model of AD. The downregulation of CXCL13 attenuated AD and allergic inflammation such as passive cutaneous anaphylaxis. The role of T cell transcription factors in AD was also investigated. Atopic dermatitis increased the expression levels of T-bet and GATA-3 [transcription factors of T-helper 1 (Th1) and T-helper 2 (Th2) cells, respectively] but decreased the expression of Foxp3, a transcription factor of regulatory T (Treg) cells, in an SOCS1-dependent manner. In addition to this, miR-122a-5p mimic also prevented AD from regulating the expression of T-bet, GATA-3, and Foxp3. Atopic dermatitis increased the expression of cluster of differentiation 163 (CD163), a marker of M2 macrophages, but decreased the expression of inducible nitric oxide synthase (iNOS), a marker of M1 macrophages. Additionally, SOCS1 and miR-122a-5p mimic regulated the expression of CD163 and iNOS in the mouse model of AD. Experiments employing conditioned medium showed interactions between MCs and macrophages in AD. The conditioned medium of AdMSCs, but not the conditioned medium of human dermal fibroblasts, negatively inhibited the features of allergic inflammation. In summary, we investigated the anti-atopic effects of AdMSCs, identified targets of AdMSCs, and determined the underlying mechanism for the anti-atopic effects of AdMSCs

    Mesenchymal Stem Cells Reduce the Extracellular Mitochondrial DNA-Mediated TLR9 Activation in Neonatal Hyperoxia-Induced Lung Injury

    No full text
    Mitochondrial DNA (mtDNA) released from dead or injured cells can activate inflammation, and mesenchymal stem cell (MSC) transplantation can reduce inflammation and injury. However, it has not been tested whether the release of mtDNA can be reduced by MSC transplantation. We hypothesized that the level of extracellular mtDNA would be increased after hyperoxia-induced lung injury but reduced after lung injury attenuation by MSC therapy in our newborn rat model. In an in vitro study using a rat lung epithelial L2 cell line, we found that the level of extracellular mtDNA was significantly increased with H2O2-induced cell death but reduced after MSC co-incubation. In an in vivo study, we confirmed that the levels of cell death, extracellular mtDNA, and inflammatory cytokines were significantly increased in hyperoxic newborn rat lungs but reduced after MSC transplantation. The levels of extracellular mtDNA were significantly and positively correlated with the levels of the inflammatory cytokines. The TLR9/MyD88/NF-κB pathway, which is activated by binding to mtDNA, was also significantly upregulated but downregulated after MSC transplantation. We found a significant positive correlation between inflammatory cytokines and extracellular mtDNA in intubated neonates. The levels of inflammatory cytokines and extracellular mtDNA changed over time in a similar pattern in transtracheal aspirate samples from intubated neonates. In conclusion, increased levels of extracellular mtDNA are associated with increased inflammation in hyperoxia-induced lung injury, and attenuation of lung inflammation by MSC therapy is associated with reduced levels of extracellular mtDNA

    Combined treatment of Taraxaci Herba and R7050 alleviates the symptoms of herpes simplex virus-induced Behçet's disease in rats

    No full text
    Background: Behçet's disease (BD) is a chronic inflammatory systemic disease that affects multiple organs. The causes of BD are still unknown, but it is primarily characterized by autoimmune reaction in the blood vessels. Current research focuses on treatments that can reduce the non-typical inflammatory responses of BD. Nevertheless, studies on improving the inflammatory effect of BD using inflammation mechanisms are still insufficient. Therefore, we conducted the integrated treatments related to inflammation modulation and achieved alleviation of symptoms in BD mice. Methods: To understand the complex etiology of BD and compare its management, the herpes simplex virus (HSV)-induced BD mouse model was used. In order to alleviate the inflammatory response in BD mice, Taraxaci Herba (TH, herbal medicine), R7050-a TNFα inhibitor, and a mixture of TH and R7050 were injected for 2 weeks repetitively. The SCORAD index was examined to evaluate the cutaneous inflammations. In addition, histological changes and inflammatory factors were analyzed. Results: Repetitive injection of TH and/or R7050 reduced the symptoms of BD and significantly decreased IL-6, IL-1β, and TNFα in blood sera. Moreover, this treatment reduced the ulcers and the deterioration of skin. Conclusions: The results of our study showed that the down-regulation of inflammatory factors is related to the control of immune responses in BD models, suggesting that a mixed drug treatment may be more effective in improving the condition of BD

    A basic helix-loop-helix transcription factor regulates cell elongation and seed germination

    No full text
    Plants are sessile and rely on a wide variety of growth hormones to adjust growth and development in response to internal and external stimuli. We have identified a gene, designated NAN, encoding a basic helix-loop-helix (bHLH) transcription factor that regulates cell elongation and seed germination in plants. NAN has an HLH motif in its C-terminal region but does not have any other discernible homologies to bHLH proteins. A bipartite nuclear localization signal is located close to the HLH motif. An Arabidopsis mutant, nan-1D, in which NAN is activated by the insertion of the 35S enhancer, exhibits growth retardation with short hypocotyls and curled leaves. It is also characterized by reduced seed germination and apical hook formation, symptomatic of GA deficiency or disrupted GA signaling. The phenotypic effects of nan-1D were increased by treatment with paclobutrazol (PAC), an inhibitor of gibberellic acid (GA) biosynthesis. NAN is constitutively expressed throughout the life cycle. Our observations indicate that NAN has a housekeeping role in plant growth and development, particularly in seed germination and cell elongation, and that it may modulate GA signaling

    Conservative Management of Patent Ductus Arteriosus Is Feasible in the Peri-Viable Infants at 22–25 Gestational Weeks

    No full text
    The purpose of this study was to determine the natural course of hemodynamically significant (HS) patent ductus arteriosus (PDA) with conservative management and whether the presence or prolonged duration of HS PDA affected mortality/morbidities in infants at 22–25 weeks estimated gestational age (EGA). We retrospectively reviewed the medical records of 77 infants born at 22–25 weeks EGA, stratified into 22–23 weeks (n = 21) and 24–25 weeks EGA (n = 56). HS PDA was present in 77%, 76%, and 77%, and open ductus at discharge was 12%, 13%, and 12% in the total and at 22–23 and 24–25 weeks EGA infants, respectively. For backup rescue treatment, 7% and 5% of the infants received oral ibuprofen and device closure, respectively. A mortality rate of 9% was found in the HS PDA (+) infants, significantly lower than the 28% in HS PDA (−) infants. There are no significant differences in morbidities. In multivariate analyses, the presence and/or prolonged duration of HS PDA was not associated with increased mortality or morbidity. Spontaneous closure of HS PDA was achieved through conservative management in the peri-viable infants at 22–25 weeks EGA

    A novel mosaic mutation in in a Korean patient with hypophosphatemic rickets

    No full text
    X-linked hypophosphatemic rickets is caused by loss-of-function mutations in PHEX, which encodes a phosphate-regulating endopeptidase homolog. We report a 26-year-old man with X-linked hypophosphatemic rickets who showed decreased serum phosphate accompanied by bilateral genu valgum and short stature. He had received medical treatment with vitamin D (alfacalcidol) and phosphate from the age of 3 to 20 years. He underwent surgery due to valgus deformity at the age of 14 and 15. Targeted gene panel sequencing for Mendelian genes identified a nonsense mutation in PHEX (c.589C>T; p.Gln197Ter) and a mosaic pattern where only 38% of sequence reads showed the variant allele. This mutation was not found in his mother, who had a normal phenotype. This is a case of a sporadic nonsense mutation in PHEX and up to date, this is the first case of a mosaic mutation in PHEX in Korea

    Protein Kinase C-delta-Mediated Recycling of Active KIT in Colon Cancer

    No full text
    Purpose: Abnormal signaling through receptor tyrosine kinase (RTK) moieties is important in tumorigenesis and drug targeting of colorectal cancers. Wild-type KIT (WT-KIT), a RTK that is activated upon binding with stem cell factor (SCF), is highly expressed in some colon cancers; however, little is known about the functional role of SCF-dependent KIT activation in colon cancer pathogenesis. We aimed to elucidate the conditions and roles of WT-KIT activation in colon cancer tumorigenesis.Experimental Design: Colorectal cancers with KIT expression were characterized by immunoblotting and immunohistochemistry. The biologic alterations after KIT-SCF binding were analyzed with or without protein kinase C (PKC) activation.Results: We found that WT-KIT was expressed in a subset of colon cancer cell lines and was activated by SCF, leading to activation of downstream AKT and extracellular signal-regulated kinase (ERK) signaling pathways. We also showed that KIT expression gradually decreased, after prolonged SCF stimulation, due to lysosomal degradation. Degradation of WT-KIT after SCF binding was significantly rescued when PKC was activated. We also showed the involvement of activated PKC-delta in the recycling of WT-KIT. We further showed that a subset of colorectal cancers exhibit expressions of both WT-KIT and activated PKC-delta and that expression of KIT is correlated with poor patient survival (P = 0.004).Conclusions: Continuous downstream signal activation after KIT-SCF binding is accomplished through PKC-delta-mediated recycling of KIT. This sustained KIT activation may contribute to tumor progression in a subset of colon cancers with KIT expression and might provide the rationale for a therapeutic approach targeting KIT. (C) 2013 AACR.OAIID:oai:osos.snu.ac.kr:snu2013-01/102/0000030226/2SEQ:2PERF_CD:SNU2013-01EVAL_ITEM_CD:102USER_ID:0000030226ADJUST_YN:YEMP_ID:A076075DEPT_CD:3344CITE_RATE:7.837DEPT_NM:생명과학부SCOPUS_YN:YCONFIRM:
    corecore