95 research outputs found

    Control of magnetotactic bacterium in a micro-fabricated maze

    Get PDF
    We demonstrate the closed-loop control of a magnetotactic bacterium (MTB), i.e., Magnetospirillum magnetotacticum, within a micro-fabricated maze using a magneticbased manipulation system. The effect of the channel wall on the motion of the MTB is experimentally analyzed. This analysis is done by comparing the characteristics of the transient- and steady-states of the controlled MTB inside and outside a microfabricated maze. In this analysis, the magnetic dipole moment of our MTB is characterized using a motile technique (the u-turn technique), then used in the realization of a closed-loop control system. This control system allows the MTB to reach reference positions within a micro-fabricated maze with a channel width of 10 μm, at a velocity of 8 μm/s. Further, the control system positions the MTB within a region-of-convergence of 10 μm in diameter. Due to the effect of the channel wall, we observe that the velocity and the positioning accuracy of the MTB are decreased and increased by 71% and 44%, respectively

    Magnetization reversal times in the 2D Ising model

    Full text link
    We present a theoretical framework which is generally applicable to the study of time scales of activated processes in systems with Brownian type dynamics. This framework is applied to a prototype system: magnetization reversal times in the 2D Ising model. Direct simulation results for the magnetization reversal times, spanning more than five orders of magnitude, are compared with theoretical predictions; the two agree in most cases within 20%.Comment: 9 pages, 8 figure

    Closed-loop control of magnetotactic bacteria

    Get PDF
    Realization of point-to-point positioning of a magnetotactic bacterium (MTB) necessitates the application of a relatively large magnetic field gradients to decrease its velocity in the vicinity of a reference position. We investigate an alternative closed-loop control approach to position the MTB. This approach is based on the characterization of the magnetic dipole moment of the MTB and its response to a field with alternating direction. We do not only find agreement between our characterized magnetic dipole moment and previously published results, but also observe that the velocity of the MTB decreases by 37% when a field with alternating direction is applied at 85 Hz. The characterization results allow us to devise a null-space control approach which capitalizes on the redundancy of magnetic-based manipulation systems. This approach is based on two inputs. The first controls the orientation of the MTB, whereas the second generates a field with alternating direction to decrease its velocity. This control is accomplished by the redundancy of our magnetic-based manipulation system which allows for the projection of the second input onto the null-space of the magnetic force-current map of our system. A proportional–derivative control system positions the MTB at an average velocity and region of convergence of 29 μm s−1 and 20 μm, respectively, while our null-space control system achieves an average velocity and region of convergence of 15 μm s−1 and 13 μm, respectively

    Palaeoproterozoic magnesite: lithological and isotopic evidence for playa/sabkha environments

    Get PDF
    Magnesite forms a series of 1- to 15-m-thick beds within the approximate to2.0 Ga (Palaeoproterozoic) Tulomozerskaya Formation, NW Fennoscandian Shield, Russia. Drillcore material together with natural exposures reveal that the 680-m-thick formation is composed of a stromatolite-dolomite-'red bed' sequence formed in a complex combination of shallow-marine and non-marine, evaporitic environments. Dolomite-collapse breccia, stromatolitic and micritic dolostones and sparry allochemical dolostones are the principal rocks hosting the magnesite beds. All dolomite lithologies are marked by delta C-13 values from +7.1 parts per thousand to +11.6 parts per thousand (V-PDB) and delta O-18 ranging from 17.4 parts per thousand to 26.3 parts per thousand (V-SMOW). Magnesite occurs in different forms: finely laminated micritic; stromatolitic magnesite; and structureless micritic, crystalline and coarsely crystalline magnesite. All varieties exhibit anomalously high delta C-13 values ranging from +9.0 parts per thousand to +11.6 parts per thousand and delta O-18 values of 20.0-25.7 parts per thousand. Laminated and structureless micritic magnesite forms as a secondary phase replacing dolomite during early diagenesis, and replaced dolomite before the major phase of burial. Crystalline and coarsely crystalline magnesite replacing micritic magnesite formed late in the diagenetic/metamorphic history. Magnesite apparently precipitated from sea water-derived brine, diluted by meteoric fluids. Magnesitization was accomplished under evaporitic conditions (sabkha to playa lake environment) proposed to be similar to the Coorong or Lake Walyungup coastal playa magnesite. Magnesite and host dolostones formed in evaporative and partly restricted environments; consequently, extremely high delta C-13 values reflect a combined contribution from both global and local carbon reservoirs. A C- 13-rich global carbon reservoir (delta C-13 at around +5 parts per thousand) is related to the perturbation of the carbon cycle at 2.0 Ga, whereas the local enhancement in C-13 (up to +12 parts per thousand) is associated with evaporative and restricted environments with high bioproductivity

    A Literature Review on Cloud Computing Adoption Issues in Enterprises

    Get PDF
    Part 3: Creating Value through ApplicationsInternational audienceCloud computing has received increasing interest from enterprises since its inception. With its innovative information technology (IT) services delivery model, cloud computing could add technical and strategic business value to enterprises. However, cloud computing poses highly concerning internal (e.g., Top management and experience) and external issues (e.g., regulations and standards). This paper presents a systematic literature review to explore the current key issues related to cloud computing adoption. This is achieved by reviewing 51 articles published about cloud computing adoption. Using the grounded theory approach, articles are classified into eight main categories: internal, external, evaluation, proof of concept, adoption decision, implementation and integration, IT governance, and confirmation. Then, the eight categories are divided into two abstract categories: cloud computing adoption factors and processes, where the former affects the latter. The results of this review indicate that enterprises face serious issues before they decide to adopt cloud computing. Based on the findings, the paper provides a future information systems (IS) research agenda to explore the previously under-investigated areas regarding cloud computing adoption factors and processes. This paper calls for further theoretical, methodological, and empirical contributions to the research area of cloud computing adoption by enterprises

    Inhaled microparticles containing clofazimine are efficacious in treatment of experimental tuberculosis in mice

    Get PDF
    Inhalable clofazimine-containing dry powder microparticles (CFM-DPI) and native clofazimine (CFM) were evaluated for activity against Mycobacterium tuberculosis in human monocyte-derived macrophage cultures and in mice infected with a low-dose aerosol. Both formulations resulted in 99% killing at 2.5 g/ml in vitro. In mice, 480 g and 720 g CFM-DPI inhaled twice per week over 4 weeks reduced numbers of CFU in the lung by as much as log10 2.6; 500 g oral CFM achieved a log10 0.7 reduction.The Indian work was funded by a grant from CSIR, India (NWP0035). R.K.V., A.K.S., and A.K.A. received research fellowships from CSIR, India, and M.M. received one from ICMR, India. The South African work was supported by The South African Medical Research Council (M.P.M., M.C., R.A.) and a K-RITH collaborative grant (Howard Hughes Medical Institute and the University of KwaZulu-Natal, to P.B.F. and W.A.G.).http://aac.asm.org/am2014ay201

    Moduli Stabilisation versus Chirality for MSSM like Type IIB Orientifolds

    Full text link
    We investigate the general question of implementing a chiral MSSM like D-brane sector in Type IIB orientifold models with complete moduli stabilisation via F-terms induced by fluxes and space-time instantons, respectively gaugino condensates. The prototype examples are the KKLT and the so-called large volume compactifications. We show that the ansatz of first stabilising all moduli via F-terms and then introducing the Standard Model module is misleading, as a chiral sector notoriously influences the structure of non-perturbative effects and induces a D-term potential. Focusing for concreteness on the large volume scenario, we work out the geometry of the swiss-cheese type Calabi-Yau manifold P_[1,3,3,3,5][15]_(3,75) and analyse whether controllable and phenomenologically acceptable Kaehler moduli stabilisation can occur by the combination of F- and D-terms.Comment: 43 pages, 4 figures, v2: refs. adde

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification. Funding: UK Research and Innovation and National Institute for Health Research
    corecore