7,834 research outputs found

    Domain State Model for Exchange Bias

    Full text link
    Monte Carlo simulations of a system consisting of a ferromagnetic layer exchange coupled to a diluted antiferromagnetic layer described by a classical spin model show a strong dependence of the exchange bias on the degree of dilution in agreement with recent experimental observations on Co/CoO bilayers. These simulations reveal that diluting the antiferromagnet leads to the formation of domains in the volume of the antiferromagnet carrying a remanent surplus magnetization which causes and controls exchange bias. To further support this domain state model for exchange bias we study in the present paper the dependence of the bias field on the thickness of the antiferromagnetic layer. It is shown that the bias field strongly increases with increasing film thickness and eventually goes over a maximum before it levels out for large thicknesses. These findings are in full agreement with experiments.Comment: 8 pages latex, 3 postscript figure

    Nonlinear wave-wave interactions in quantum plasmas

    Full text link
    Wave-wave interaction in plasmas is a topic of important research since the 16th century. The formation of Langmuir solitons through the coupling of high-frequency (hf) Langmuir and low-frequency (lf) ion-acoustic waves, is one of the most interesting features in the context of turbulence in modern plasma physics. Moreover, quantum plasmas, which are ubiquitous in ultrasmall electronic devices, micromechanical systems as well as in dense astrophysical environments are a topic of current research. In the light of notable interests in such quantum plasmas, we present here a theoretical investigation on the nonlinear interaction of quantum Langmuir waves (QLWs) and quantum ion-acoustic waves (QIAWs), which are governed by the one-dimensional quantum Zakharov equations (QZEs). It is shown that a transition to spatiotemporal chaos (STC) occurs when the length scale of excitation of linear modes is larger than that of the most unstable ones. Such length scale is, however, to be larger (compared to the classical one) in presence of the quantum tunneling effect. The latter induces strong QIAW emission leading to the occurrence of collision and fusion among the patterns at an earlier time than the classical case. Moreover, numerical simulation of the QZEs reveals that many solitary patterns can be excited and saturated through the modulational instability (MI) of unstable harmonic modes. In a longer time, these solitons are seen to appear in the state of STC due to strong QIAW emission as well as by the collision and fusion in stochastic motion. The energy in the system is thus strongly redistributed, which may switch on the onset of Langmuir turbulence in quantum plasmas.Comment: 6 pages, 6 figures (To appear in AIP Conf. Proceedings 2010

    Rossby rogons in atmosphere and in the solar photosphere

    Full text link
    The generation of Rossby rogue waves (Rossby rogons), as well as the excitation of bright and dark Rossby envelpe solitons are demonstrated on the basis of the modulational instability (MI) of a coherent Rossby wave packet. The evolution of an amplitude modulated Rossby wave packet is governed by one-dimensional (1D) nonlinear Schr\"odinger equation (NLSE). The latter is used to study the amplitude modulation of Rossby wave packets for fluids in Earth's atmosphere and in the solar photosphere. It is found that an ampitude modulated Rossby wave packet becomes stable (unstable) against quasi-stationary, long wavelength (in comparision with the Rossby wave length) perturbations, when the carrier Rossby wave number satisfies k2<1/2k^2 < 1/2 or 2+13\sqrt{2}+13 or 1/2<k2<2+11/2<k^2<\sqrt{2}+1). It is also shown that a Rossby rogon or a bright Rossby envelope soliton may be excited in the shallow water approximation for the Rossby waves in solar photosphere. However, the excitation of small or large scale perturbations may be possible for magnetized plasmas in the ionosphereic EE-layer.Comment: 6 pages, 5 figures; To appear in Europhysics Letter

    Length and time scale divergences at the magnetization-reversal transition in the Ising model

    Full text link
    The divergences of both the length and time scales, at the magnetization- reversal transition in Ising model under a pulsed field, have been studied in the linearized limit of the mean field theory. Both length and time scales are shown to diverge at the transition point and it has been checked that the nature of the time scale divergence agrees well with the result obtained from the numerical solution of the mean field equation of motion. Similar growths in length and time scales are also observed, as one approaches the transition point, using Monte Carlo simulations. However, these are not of the same nature as the mean field case. Nucleation theory provides a qualitative argument which explains the nature of the time scale growth. To study the nature of growth of the characteristic length scale, we have looked at the cluster size distribution of the reversed spin domains and defined a pseudo-correlation length which has been observed to grow at the phase boundary of the transition.Comment: 9 pages Latex, 3 postscript figure

    Modeling exchange bias microscopically

    Full text link
    Exchange bias is a horizontal shift of the hysteresis loop observed for a ferromagnetic layer in contact with an antiferromagnetic layer. Since exchange bias is related to the spin structure of the antiferromagnet, for its fundamental understanding a detailed knowledge of the physics of the antiferromagnetic layer is inevitable. A model is investigated where domains are formed in the volume of the AFM stabilized by dilution. These domains become frozen during the initial cooling procedure carrying a remanent net magnetization which causes and controls exchange bias. Varying the anisotropy of the antiferromagnet we find a nontrivial dependence of the exchange bias on the anisotropy of the antiferromagnet.Comment: 7 pages, 5 figure

    Estimated heats of fusion of fluoride salt mixtures suitable for thermal energy storage applications

    Get PDF
    The heats of fusion of several fluoride salt mixtures with melting points greater than 973 K were estimated from a coupled analysis of the available thermodynamic data and phase diagrams. Simple binary eutectic systems with and without terminal solid solutions, binary eutectics with congruent melting intermediate phases, and ternary eutectic systems were considered. Several combinations of salts were identified, most notable the eutectics LiF-22CaF2 and NaF-60MgF2 which melt at 1039 and 1273 K respectively which posses relatively high heats of fusion/gm (greater than 0.7 kJ/g). Such systems would seemingly be ideal candidates for the light weight, high energy storage media required by the thermal energy storage unit in advanced solar dynamic power systems envisioned for the future space missions

    Survey of Object Detection Methods in Camouflaged Image

    Get PDF
    Camouflage is an attempt to conceal the signature of a target object into the background image. Camouflage detection methods or Decamouflaging method is basically used to detect foreground object hidden in the background image. In this research paper authors presented survey of camouflage detection methods for different applications and areas

    Nucleation theory and the phase diagram of the magnetization-reversal transition

    Full text link
    The phase diagram of the dynamic magnetization-reversal transition in pure Ising systems under a pulsed field competing with the existing order can be explained satisfactorily using the classical nucleation theory. Indications of single-domain and multi-domain nucleation and of the corresponding changes in the nucleation rates are clearly observed. The nature of the second time scale of relaxation, apart from the field driven nucleation time, and the origin of its unusual large values at the phase boundary are explained from the disappearing tendency of kinks on the domain wall surfaces after the withdrawal of the pulse. The possibility of scaling behaviour in the multi-domain regime is identified and compared with the earlier observations.Comment: 10 pages Latex, 4 Postscript figure
    corecore