7 research outputs found
Influence of mannan epitopes in glycoproteins - Concanavalin A interaction. Comparison of natural and synthetic glycosylated proteins
Two natural glycoproteins/glycoenzymes, invertase and glucoamylase, and two neoglycoconjugates, synthetized from Saccharomyces cerevisiae mannan, bovine serum albumin and penicillin G acylase were tested for interaction with lectin Concanavalin A (Con A). The interaction of natural and synthetic glycoproteins with Con A was studied using three different experimental methods: (i) quantitative precipitation in solution (ii) sorption to Con A immobilized on bead cellulose; and (iii) kinetic measurement of the interaction by surface plasmon resonance. Prepared neoglycoproteins were further characterized: saccharide content, molecular weight, polydispersion, kinetic and equilibrium association constants with Con A were determined. It can be concluded that the used conjugation method proved to be able to produce neoglycoproteins with similar properties like natural glycoproteins, i.e. enzymatic activity (protein part) and lectin binding activity (mannan part) were preserved and the neoglycoconjugates interact with Con A similarly as natural mannan-type glycoproteins
Biospecific immobilization of mannan-penicillin G acylase neoglycoenzyme on Concanavalin A-bead cellulose
The matter of this work was to evaluate possibilities of biospecific immobilization of synthetic mannan-penicillin G acylase neoglycoconjugate on Concanavalin A support. The conjugate containing 37% (w/w) of yeast mannan was prepared. Significant biospecific interaction of this neoglycoenzyme with Con A was confirmed by precipitation method. The biospecific sorption of conjugate was investigated using Concanavalin A-triazine bead celluloses MT-100 with different content of Con A (from 1.4 to 9.8 mg Con A/g wet support). The results obtained under optimal conditions were compared with those from covalent immobilization of PGA. The sorbent capacity was observed higher for covalent binding of enzyme. On the other hand, the biospecifically immobilized neoglycoenzyme retained a greater amount of initial activity. The maximum amount of 6.6 mg immobilized neoglycoenzyme/g wet Con A-sorbent (18.1 U/g) was achieved. The amount as well as activity of immobilized mannan-penicillin G acylase was increased by its two multiple layering on surface of sorbent (10.1 mg, respectively, 23.5 U/g wet sorbent). Determined storage and operational (using flow calorimetric method) stabilities of biospecifically immobilized enzyme, were similar, possibly somewhat higher that those of covalent bound penicillin G acylase. (C) 2004 Elsevier B.V. All rights reserved
Mannan-penicillin G acylase neoglycoproteins and their potential applications in biotechnology
Mannan-penicillin G acylase neoglycoproteins were prepared by the conjugation of Saccharomyces cerevisiae mannan with enzyme penicillin G acylase using the reductive amination method. Eight neoglycoproteins preparations were obtained after gel chromatography. The preparations contained from 42 to 67% (w/w) saccharides and their molar masses varied from 283 to over 1000 kDa. Significant biospecific interaction of separated fractions with the lectin concanavalin A was evaluated by the precipitation and sorption method (equilibrium constants) and further characterized using surface plasmon resonance to determine kinetic association and dissociation constants. K-D was determined over the range 10(-7) M. High-molar-mass preparations appeared to be more suitable for preparation of stable and active complexes with concanavalin A for prospective use as a penicillin G acylase biocatalyst in enzyme reactors. The enzyme stability of such complexes was significantly increased compared with the original neoglycoprotein. Lower-molar-mass preparations were more suitable for applications such as biocatalysts in bioanalytical devices
Neoglycoconjugates of mannan with bovine serum albumin and their interaction with lectin concanavalin A
Neoglycoconjugates were prepared from mannan isolated from yeast Saccharomyces cerevisiae and activated by periodate oxidation to create aldehyde groups. Various degrees of oxidation introduced 11-28 aldehyde groups per mannan molecule and simultaneously resulted in a molar mass decrease from 46 to 44.5-31 kDa. The activated mannans were subsequently conjugated with bovine serum albumin forming neoglycoconjugates. Some parameters of these mannan-bovine serum albumin conjugates were characterized: saccharide content 25-30% w/w, molar mass within the range 169-246 kDa, and polydispersion (M-w/M-n) from 2.8 to 3.6. The interaction of these conjugates with lectin concanavalin A was studied using three different methods: W quantitative precipitation in solution; (ii) sorption to concanavalin A immobilized on bead cellulose; and (iii) kinetic measurement of the interaction by surface plasmon resonance. Quantitative precipitation assay showed only negligible differences in the precipitation course of original mannan and the corresponding mannan-bovine serum albumin conjugates. Both the sorption method (equilibrium method) and the surface plasmon resonance measurement (kinetic method) demonstrates that the values of dissociation constant K-D of all synthetic neoglycoconjugates were within the range 10(-7)-10(-8) mol.L-1 (close to K-D = 10(-1) mol-L-1 determined by the sorption method for the original mannan). In conclusion, characterization of synthetic neoglycoconjugates confirmed that the method used for their preparation retained the ability of mannan moiety to interact with concanavalin A
Glycomics meets artificial intelligence – Potential of glycan analysis for identification of seropositive and seronegative rheumatoid arthritis patients revealed
In this study, one hundred serum samples from healthy people and patients with rheumatoid arthritis (RA) were analyzed. Standard immunoassays for detection of 10 different RA markers and analysis of glycan markers on antibodies in 10 different assay formats with several lectins were applied for each serum sample. A dataset containing 2000 data points was data mined using artificial neural networks (ANN). We identified key RA markers, which can discriminate between healthy people and seropositive RA patients (serum containing autoantibodies) with accuracy of 83.3%. Combination of RA markers with glycan analysis provided much better discrimination accuracy of 92.5%. Immunoassays completely failed to identify seronegative RA patients (serum not containing autoantibodies), while glycan analysis correctly identified 43.8% of these patients. Further, we revealed other critical parameters for successful glycan analysis such as type of a sample, format of analysis and orientation of captured antibodies for glycan analysis. 2018 Elsevier B.V.Financial support received from the Slovak Scientific Grant Agency VEGA 2/0137/18 and Slovak Research and Development Agency APVV 14-0753 is acknowledged. The research received funding from the European Research Council (No. 311532 ). This publication was made possible by NPRP grant no. 6-381-1-078 from the Qatar National Research Fund. This publication is the result of the project implementation: Centre for materials, layers and systems for applications and chemical processes under extreme conditions � Stage I, ITMS No.: 26240120007, supported by the ERDF. Appendix