13 research outputs found

    Optimization of the Asymptotic Property of Mutual Learning Involving an Integration Mechanism of Ensemble Learning

    Full text link
    We propose an optimization method of mutual learning which converges into the identical state of optimum ensemble learning within the framework of on-line learning, and have analyzed its asymptotic property through the statistical mechanics method.The proposed model consists of two learning steps: two students independently learn from a teacher, and then the students learn from each other through the mutual learning. In mutual learning, students learn from each other and the generalization error is improved even if the teacher has not taken part in the mutual learning. However, in the case of different initial overlaps(direction cosine) between teacher and students, a student with a larger initial overlap tends to have a larger generalization error than that of before the mutual learning. To overcome this problem, our proposed optimization method of mutual learning optimizes the step sizes of two students to minimize the asymptotic property of the generalization error. Consequently, the optimized mutual learning converges to a generalization error identical to that of the optimal ensemble learning. In addition, we show the relationship between the optimum step size of the mutual learning and the integration mechanism of the ensemble learning.Comment: 13 pages, 3 figures, submitted to Journal of Physical Society of Japa

    Public channel cryptography by synchronization of neural networks and chaotic maps

    Full text link
    Two different kinds of synchronization have been applied to cryptography: Synchronization of chaotic maps by one common external signal and synchronization of neural networks by mutual learning. By combining these two mechanisms, where the external signal to the chaotic maps is synchronized by the nets, we construct a hybrid network which allows a secure generation of secret encryption keys over a public channel. The security with respect to attacks, recently proposed by Shamir et al, is increased by chaotic synchronization.Comment: 4 page

    Synchronization of random walks with reflecting boundaries

    Full text link
    Reflecting boundary conditions cause two one-dimensional random walks to synchronize if a common direction is chosen in each step. The mean synchronization time and its standard deviation are calculated analytically. Both quantities are found to increase proportional to the square of the system size. Additionally, the probability of synchronization in a given step is analyzed, which converges to a geometric distribution for long synchronization times. From this asymptotic behavior the number of steps required to synchronize an ensemble of independent random walk pairs is deduced. Here the synchronization time increases with the logarithm of the ensemble size. The results of this model are compared to those observed in neural synchronization.Comment: 10 pages, 7 figures; introduction changed, typos correcte
    corecore