We propose an optimization method of mutual learning which converges into the
identical state of optimum ensemble learning within the framework of on-line
learning, and have analyzed its asymptotic property through the statistical
mechanics method.The proposed model consists of two learning steps: two
students independently learn from a teacher, and then the students learn from
each other through the mutual learning. In mutual learning, students learn from
each other and the generalization error is improved even if the teacher has not
taken part in the mutual learning. However, in the case of different initial
overlaps(direction cosine) between teacher and students, a student with a
larger initial overlap tends to have a larger generalization error than that of
before the mutual learning. To overcome this problem, our proposed optimization
method of mutual learning optimizes the step sizes of two students to minimize
the asymptotic property of the generalization error. Consequently, the
optimized mutual learning converges to a generalization error identical to that
of the optimal ensemble learning. In addition, we show the relationship between
the optimum step size of the mutual learning and the integration mechanism of
the ensemble learning.Comment: 13 pages, 3 figures, submitted to Journal of Physical Society of
Japa