21 research outputs found

    Shock waves for the Burgers equation and curvatures of diffeomorphism groups

    Full text link
    We establish a simple relation between curvatures of the group of volume-preserving diffeomorphisms and the lifespan of potential solutions to the inviscid Burgers equation before the appearance of shocks. We show that shock formation corresponds to a focal point of the group of volume-preserving diffeomorphisms regarded as a submanifold of the full diffeomorphism group and, consequently, to a conjugate point along a geodesic in the Wasserstein space of densities. This establishes an intrinsic connection between ideal Euler hydrodynamics (via Arnold's approach), shock formation in the multidimensional Burgers equation and the Wasserstein geometry of the space of densities.Comment: 11 pages, 2 figure

    Asymptotic directions, Monge-Ampere equations and the geometry of diffeomorphism groups

    Full text link
    In this note we obtain the characterization for asymptotic directions on various subgroups of the diffeomorphism group. We give a simple proof of non-existence of such directions for area-preserving diffeomorphisms of closed surfaces of non-zero curvature. Finally, we exhibit the common origin of the Monge-Ampere equations in 2D fluid dynamics and mass transport.Comment: 10 pages, 1 fig., to appear in J. of Math. Fluid Mechanic

    Geometry of the Madelung transform

    Full text link
    The Madelung transform is known to relate Schr\"odinger-type equations in quantum mechanics and the Euler equations for barotropic-type fluids. We prove that, more generally, the Madelung transform is a K\"ahler map (i.e. a symplectomorphism and an isometry) between the space of wave functions and the cotangent bundle to the density space equipped with the Fubini-Study metric and the Fisher-Rao information metric, respectively. We also show that Fusca's momentum map property of the Madelung transform is a manifestation of the general approach via reduction for semi-direct product groups. Furthermore, the Hasimoto transform for the binormal equation turns out to be the 1D case of the Madelung transform, while its higher-dimensional version is related to the problem of conservation of the Willmore energy in binormal flows.Comment: 27 pages, 2 figure

    Geometric Hydrodynamics via Madelung Transform

    Full text link
    We introduce a geometric framework to study Newton's equations on infinite-dimensional configuration spaces of diffeomorphisms and smooth probability densities. It turns out that several important PDEs of hydrodynamical origin can be described in this framework in a natural way. In particular, the Madelung transform between the Schr\"odinger equation and Newton's equations is a symplectomorphism of the corresponding phase spaces. Furthermore, the Madelung transform turns out to be a K\"ahler map when the space of densities is equipped with the Fisher-Rao information metric. We describe several dynamical applications of these results.Comment: 17 pages, 2 figure

    Generalized Hunter-Saxton equation and the geometry of the group of circle diffeomorphisms

    Full text link
    We study an equation lying `mid-way' between the periodic Hunter-Saxton and Camassa-Holm equations, and which describes evolution of rotators in liquid crystals with external magnetic field and self-interaction. We prove that it is an Euler equation on the diffeomorphism group of the circle corresponding to a natural right-invariant Sobolev metric. We show that the equation is bihamiltonian and admits both cusped, as well as smooth, traveling-wave solutions which are natural candidates for solitons. We also prove that it is locally well-posed and establish results on the lifespan of its solutions. Throughout the paper we argue that despite similarities to the KdV, CH and HS equations, the new equation manifests several distinctive features that set it apart from the other three.Comment: 30 pages, 2 figure

    Geometric hydrodynamics and infinite-dimensional Newton's equations

    Full text link
    We revisit the geodesic approach to ideal hydrodynamics and present a related geometric framework for Newton's equations on groups of diffeomorphisms and spaces of probability densities. The latter setting is sufficiently general to include equations of compressible and incompressible fluid dynamics, magnetohydrodynamics, shallow water systems and equations of relativistic fluids. We illustrate this with a survey of selected examples, as well as with new results, using the tools of infinite-dimensional information geometry, optimal transport, the Madelung transform, and the formalism of symplectic and Poisson reduction.Comment: 62 pages. Revised version, accepted in Bull. AM
    corecore