26,605 research outputs found

    Vacuum structure and effective potential at finite temperature: a variational approach

    Full text link
    We compute the effective potential for ϕ4\phi^4 theory with a squeezed coherent state type of construct for the ground state. The method essentially consists in optimising the basis at zero and finite temperatures. The gap equation becomes identical to resumming the infinite series of daisy and super daisy graphs while the effective potential includes multiloop effects and agrees with that obtained through composite operator formalism at finite temperature.Comment: 15 pages, Revtex, No figures, to appear in Jou. of Phys.G(Nucl. and Part. Phys.

    Spin-Charge Decoupling and Orthofermi Quantum Statistics

    Full text link
    Currently Gutzwiller projection technique and nested Bethe ansatz are two main methods used to handle electronic systems in the UU infinity limit. We demonstrate that these two approaches describe two distinct physical systems. In the nested Bethe ansatz solutions, there is a decoupling between the spin and charge degrees of freedom. Such a decoupling is absent in the Gutzwiller projection technique. Whereas in the Gutzwiller approach, the usual antisymmetry of space and spin coordinates is maintained, we show that the Bethe ansatz wave function is compatible with a new form of quantum statistics, viz., orthofermi statistics. In this statistics, the wave function is antisymmetric in spatial coordinates alone. This feature ultimately leads to spin-charge decoupling.Comment: 12 pages, LaTex Journal_ref: A slightly abridged version of this paper has appeared as a brief report in Phys. Rev. B, Vol. 63, 132405 (2001

    Fabrication of Nano-Gapped Single-Electron Transistors for Transport Studies of Individual Single-Molecule Magnets

    Get PDF
    Three terminal single-electron transistor devices utilizing Al/Al2O3 gate electrodes were developed for the study of electron transport through individual single-molecule magnets. The devices were patterned via multiple layers of optical and electron beam lithography. Electromigration induced breaking of the nanowires reliably produces 1-3 nm gaps between which the SMM can be situated. Conductance through a single Mn12(3-thiophenecarboxylate) displays the coulomb blockade effect with several excitations within +/- 40 meV.Comment: 10 pages, 5 figure

    Pulse and quench induced dynamical phase transition in a chiral multiferroic spin chain

    Full text link
    Quantum dynamics of magnetic order in a chiral multiferroic chain is studied. We consider two different scenarios: Ultrashort terahertz (THz) excitations or a sudden electric field quench. Performing analytical and numerical exact diagonalization calculations we trace the pulse induced spin dynamics and extract quantities that are relevant to quantum information processing. In particular, we analyze the dynamics of the system chirality, the von Neumann entropy, the pairwise and the many body entanglement. If the characteristic frequencies of the generated states are non-commensurate then a partial loss of pair concurrence occurs. Increasing the system size this effect becomes even more pronounced. Many particle entanglement and chirality are robust and persist in the incommensurate phase. To analyze the dynamical quantum transitions for the quenched and pulsed dynamics we combined the Weierstrass factorization technique for entire functions and Lanczos exact diagonalization method. For a small system we obtained analytical results including the rate function of Loschmidt echo. Exact numerical calculations for a system up to 40 spins confirm phase transition. Quench- induced dynamical transitions have been extensively studied recently. Here we show that related dynamical transitions can be achieved and controlled by appropriate electric field pulses.Comment: 13 pages, 10 figures, submitted in PR
    corecore