717 research outputs found

    Short Term Load Forecasting Using Computational Intelligence Methods

    Get PDF
    Load forecasting is very essential to the operation of electricity companies. It enhances the energy-efficient and reliable operation of a power system. This dissertation focuses on study of short term load forecasting using different types of computational intelligence methods. It uses evolutionary algorithms (i.e. Genetic Algorithm, Particle Swarm Optimization, Artificial Immune System), neural networks (i.e. MLPNN, RBFNN, FLANN, ADALIN, MFLNN, WNN, Recurrent NN, Wilcoxon NN), and fuzzy systems (i.e. ANFIS). The developed methods give load forecasts of one hour upto 24 hours in advance. The algorithms and networks were have been demonstrated using simulation studies. The power sector in Orissa has undergone various structural and organizational changes in recent past. The main focus of all the changes initiated is to make the power system more efficient, economically viable and better service oriented. All these can happen if, among other vital factors, there is a good and accurate system in place for forecasting the load that would be in demand by electricity customers. Such forecasts will be highly useful in proper system planning & operations. The techniques proposed in this thesis have been simulated using data obtained from State Load Dispatch Centre, Orissa for the duration September – 2006 to August – 2007

    Efficacy of two artemisinin-based combinations for the treatment of malaria in pregnancy in India: a randomized controlled trial.

    Get PDF
    BACKGROUND: In India, the recommended first-line treatment for malaria in the second and third trimester of pregnancy is artesunate + sulfadoxine-pyrimethamine (AS+SP). However, data on safety and efficacy of artemisinin-based combination therapy (ACT) in pregnancy is limited. This study assessed the safety and efficacy of AS+SP and artesunate + mefloquine (AS+MQ) for treatment of Plasmodium falciparum in pregnancy in India. METHODS: This open-label, randomized clinical trial was conducted from October 2010 to December 2013 at three sites in India (Ranchi and Jamshedpur in Jharkhand state, and Rourkela in Odisha state). Pregnant women in the second or third trimester who had P. falciparum mono-infection of any parasite density with or without fever were randomized to receive AS+SP or AS+MQ. Blood slides and filter paper samples for Polymerase Chain Reaction (PCR) were collected on days 0, 1, 2, 3, 14, 21, 28, 42 and 63 post treatment. Women were followed up at delivery and at day 42 postpartum. FINDINGS: Two hundred and forty-eight women of 7064 pregnant women (3.5%) who were screened at monthly antenatal clinics had a P. falciparum mono-infection and were randomized to receive AS+SP (125) or AS+MQ (123) and all of these women were included in the intention to treat (ITT) analysis. The primary endpoint of an adequate clinical and parasite response (ACPR) on day 63 was not available for 9 women who were counted as treatment failure in the ITT analysis. In the ITT population, the ACPR was 121/125 (96.8%; 95% Confidence interval (CI) 92.0-99.1%) in the AS+SP group and 117/123 (95.1%; 95% CI 89.7-98.2) in the AS+MQ group. Among the 239 women (121 from the AS+SP arm and 118 from the AS+MQ arm) who completed the day 63 follow up (per protocol analysis) the ACPR was 100% in the AS+SP group and 99.2% (117/118) in the AS+MQ group. There were five serious adverse events (SAE) among pregnant women (4 in the AS+SP group and 1 in the AS+MQ group) and 13 fetal/neonatal SAEs (7 in the AS+SP group and 6 in the AS+MQ) but none of them were related to the study drugs. A higher proportion of women in the AS+MQ arm reported vomiting within 7 days post-treatment than did women in the AS+SP arm (6.9 vs. 1.6%; p = 0.001). CONCLUSION: Both AS+SP and AS+MQ are safe and effective for treatment of uncomplicated falciparum malaria in pregnancy in India. Trial registration CTRI This study is registered with Clinical Trial Registry India (CTRI), number CTRI/2009/091/001055. Date of Registration 11 January 2010, http://ctri.nic.in/Clinicaltrials/pmaindet2.php?trialid=1185&EncHid=&userName=anvikar

    Prediction of outcome in adults with severe falciparum malaria: a new scoring system

    Get PDF
    BACKGROUND: Mortality of falciparum malaria is related to the presence of severe complications. However, no scoring system is available to predict outcome of these patients. The aim of this paper was to devise a simple and reliable malaria prognosis score (MPS) to predict the outcome of adults with severe malaria. METHODS: All slide-positive severe falciparum malaria patients admitted to Ispat General Hospital were studied. Eight clinical parameters that may potentially differentiate or influence the outcome were identified to predict recovery or death RESULTS: Of 248 severe malaria cases, 35 died. There were 212 adults (34 deaths) and 36 children (one death). The malaria score for adults was (MSA) = 1(severe anaemia) + 2 (acute renal failure) + 3(Respiratory distress) +4 (cerebral malaria). The MSA ranges from 0 to 10. The mortality was 2% for MSA 0 – 2; 10% for MSA 3–4, 40% for MSA 5–6 and 90% for MSA 7 or more. The sensitivity is 89.9% and positive predictive value is 94.1% when 5 is taken as the cut off value. CONCLUSION: MSA is a simple and sensitive predictor. It can be administered rapidly and repeatedly to prognosticate the outcome of severe malaria in adults. It can help the treating doctor to assess the patient as well as to communicate to the relatives of the patients about prognosis. The score needs revalidation in other geographical areas

    Pathogenesis of cerebral malaria: new diagnostic tools, biomarkers, and therapeutic approaches.

    Get PDF
    Cerebral malaria is a severe neuropathological complication of Plasmodium falciparum infection. It results in high mortality and post-recovery neuro-cognitive disorders in children, even after appropriate treatment with effective anti-parasitic drugs. While the complete landscape of the pathogenesis of cerebral malaria still remains to be elucidated, numerous innovative approaches have been developed in recent years in order to improve the early detection of this neurological syndrome and, subsequently, the clinical care of affected patients. In this review, we briefly summarize the current understanding of cerebral malaria pathogenesis, compile the array of new biomarkers and tools available for diagnosis and research, and describe the emerging therapeutic approaches to tackle this pathology effectively

    Magnetic resonance imaging during life: the key to unlock cerebral malaria pathogenesis?

    Get PDF
    Understanding the mechanisms underlying the pathophysiology of cerebral malaria in patients with Plasmodium falciparum infection is necessary to implement new curative interventions. While autopsy-based studies shed some light on several pathological events that are believed to be crucial in the development of this neurologic syndrome, their investigative potential is limited and has not allowed the identification of causes of death in patients who succumb to it. This can only be achieved by comparing features between patients who die from cerebral malaria and those who survive. In this review, several alternative approaches recently developed to facilitate the comparison of specific parameters between fatal, non-fatal cerebral malaria and uncomplicated malaria patients are described, as well as their limitations. The emergence of neuroimaging as a revolutionary tool in identifying critical structural and functional modifications of the brain during cerebral malaria is discussed and highly promising areas of clinical research using magnetic resonance imaging are highlighted

    Investigating the Pathogenesis of Severe Malaria: A Multidisciplinary and Cross-Geographical Approach.

    Get PDF
    More than a century after the discovery of Plasmodium spp. parasites, the pathogenesis of severe malaria is still not well understood. The majority of malaria cases are caused by Plasmodium falciparum and Plasmodium vivax, which differ in virulence, red blood cell tropism, cytoadhesion of infected erythrocytes, and dormant liver hypnozoite stages. Cerebral malaria coma is one of the most severe manifestations of P. falciparum infection. Insights into its complex pathophysiology are emerging through a combination of autopsy, neuroimaging, parasite binding, and endothelial characterizations. Nevertheless, important questions remain regarding why some patients develop life-threatening conditions while the majority of P. falciparum-infected individuals do not, and why clinical presentations differ between children and adults. For P. vivax, there is renewed recognition of severe malaria, but an understanding of the factors influencing disease severity is limited and remains an important research topic. Shedding light on the underlying disease mechanisms will be necessary to implement effective diagnostic tools for identifying and classifying severe malaria syndromes and developing new therapeutic approaches for severe disease. This review highlights progress and outstanding questions in severe malaria pathophysiology and summarizes key areas of pathogenesis research within the International Centers of Excellence for Malaria Research program

    Variations in host genes encoding adhesion molecules and susceptibility to falciparum malaria in India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Host adhesion molecules play a significant role in the pathogenesis of <it>Plasmodium falciparum </it>malaria and changes in their structure or levels in individuals can influence the outcome of infection. The aim of this study was to investigate the association of SNPs of three adhesion molecule genes, <it>ICAM1</it>, <it>PECAM1 </it>and <it>CD36</it>, with severity of falciparum malaria in a malaria-endemic and a non-endemic region of India.</p> <p>Methods</p> <p>The frequency distribution of seven selected SNPs of <it>ICAM1</it>, <it>PECAM1 </it>and <it>CD36 </it>was determined in 552 individuals drawn from 24 populations across India. SNP-disease association was analysed in a case-control study format. Genotyping of the population panel was performed by Sequenom mass spectroscopy and patient/control samples were genotyped by SNaPshot method. Haplotypes and linkage disequilibrium (LD) plots were generated using PHASE and Haploview, respectively. Odds-ratio (OR) for risk assessment was estimated using EpiInfo™ version 3.4.</p> <p>Results</p> <p>Association of the ICAM1 rs5498 (exon 6) G allele and the CD36 exon 1a A allele with increased risk of severe malaria was observed (severe versus control, OR = 1.91 and 2.66, P = 0.02 and 0.0012, respectively). The CD36 rs1334512 (-53) T allele as well as the TT genotype associated with protection from severe disease (severe versus control, TT versus GG, OR = 0.37, P = 0.004). Interestingly, a SNP of the <it>PECAM1 </it>gene (rs668, exon 3, C/G) with low minor allele frequency in populations of the endemic region compared to the non-endemic region exhibited differential association with disease in these regions; the G allele was a risk factor for malaria in the endemic region, but exhibited significant association with protection from disease in the non-endemic region.</p> <p>Conclusion</p> <p>The data highlights the significance of variations in the <it>ICAM1</it>, <it>PECAM1 </it>and <it>CD36 </it>genes in the manifestation of falciparum malaria in India. The <it>PECAM1 </it>exon 3 SNP exhibits altered association with disease in the endemic and non-endemic region.</p
    corecore