14,529 research outputs found
Theory of thermal conductivity in extended- state superconductors: application to ferropnictides
Within a two-band model for the recently discovered ferropnictide materials,
we calculate the thermal conductivity assuming general superconducting states
of ("s-wave") symmetry, considering both currently popular isotropic
"sign-changing" states and states with strong anisotropy, including those
which manifest nodes or deep minima of the order parameter. We consider both
intra- and interband disorder scattering effects, and show that in situations
where a low-temperature linear- exists in the thermal conductivity, it is
not always "universal" as in d-wave superconductors. We discuss the conditions
under which such a term can disappear, as well as how it can be induced by a
magnetic field. We compare our results to several recent experiments.Comment: 13 page
Vacuum structure and effective potential at finite temperature: a variational approach
We compute the effective potential for theory with a squeezed
coherent state type of construct for the ground state. The method essentially
consists in optimising the basis at zero and finite temperatures. The gap
equation becomes identical to resumming the infinite series of daisy and super
daisy graphs while the effective potential includes multiloop effects and
agrees with that obtained through composite operator formalism at finite
temperature.Comment: 15 pages, Revtex, No figures, to appear in Jou. of Phys.G(Nucl. and
Part. Phys.
Sommerfeld enhancement from Goldstone pseudo-scalar exchange
We point out that the exchange of a Goldstone pseudo-scalar can provide an
enhancement in the dark matter annihilation rate capable of explaining the
excess flux seen in high energy cosmic ray data. The mechanism of enhancement
involves the coupling of s and d waves through the tensor force that is very
strong and, in fact, singular at short distances. The results indicate that
large enhancements require some amount of fine tuning. We also discuss the
enhancement due to other singular attractive potentials, such as WIMP models
with a permanent electric dipole.Comment: 14 pages, 4 figures, v2 includes contact informatio
Chiral symmetry breaking, color superconductivity and color neutral quark matter: a variational approach
We investigate the vacuum realignment for chiral symmetry breaking and color
superconductivity at finite density in Nambu-Jona-Lasinio model in a
variational method. The treatment allows us to investigate simultaneous
formation of condensates in quark antiquark as well as in diquark channels. The
methodology involves an explicit construction of a variational ground state and
minimisation of the thermodynamic potential. Color and electric charge
neutrality conditions are imposed through introduction of appropriate chemical
potentials. Color and flavor dependent condensate functions are determined
through minimisation of the thermodynamic potential. The equation of state is
calculated. Simultaneous existence of a mass gap and superconducting gap is
seen in a small window of quark chemical potential within the model when charge
neutrality conditions are not imposed. Enforcing color and electric charge
neutrality conditions gives rise to existence of gapless superconducting modes
depending upon the magnitude of the gap and the difference of the chemical
potentials of the condensing quarks.Comment: 13 pages, 6 figures,to appear in Phys. Rev.
Dynamics in a noncommutative phase space
Dynamics has been generalized to a noncommutative phase space. The
noncommuting phase space is taken to be invariant under the quantum group
. The -deformed differential calculus on the phase space is
formulated and using this, both the Hamiltonian and Lagrangian forms of
dynamics have been constructed. In contrast to earlier forms of -dynamics,
our formalism has the advantage of preserving the conventional symmetries such
as rotational or Lorentz invariance.Comment: LaTeX-twice, 16 page
Singular Effects of Impurities near the Ferromagnetic Quantum-Critical Point
Systematic theoretical results for the effects of a dilute concentration of
magnetic impurities on the thermodynamic and transport properties in the region
around the quantum critical point of a ferromagnetic transition are obtained.
In the quasi-classical regime, the dynamical spin fluctuations enhance the
Kondo temperature. This energy scale decreases rapidly in the quantum
fluctuation regime, where the properties are those of a line of critical points
of the multichannel Kondo problem with the number of channels increasing as the
critical point is approached, except at unattainably low temperatures where a
single channel wins out.Comment: 4 pages, 2 figure
- …