3,402 research outputs found

    Polyamorphism of ice at low temperatures from constant-pressure simulations

    Full text link
    We report results of MD simulations of amorphous ice in the pressure range 0 - 22.5 kbar. The high-density amorphous ice (HDA) prepared by compression of Ih ice at T = 80 K is annealed to T = 170 K at intermediate pressures in order to generate relaxed states. We confirm the existence of recently observed phenomena, the very high-density amorphous ice and a continuum of HDA forms. We suggest that both phenomena have their origin in the evolution of the network topology of the annealed HDA phase with decreasing volume, resulting at low temperatures in the metastability of a range of densities.Comment: 11 pages, 5 postscript figures. To be published in Physical Review Letter

    Implication of the B -> rho rho data on the B -> pi pi puzzle

    Full text link
    We point out that the B -> rho rho data have seriously constrained the possibility of resolving the B -> pi pi puzzle from the large observed B^0 -> pi^0 pi^0 branching ratio in the available theoretical approaches. The next-to-leading-order (NLO) contributions from the vertex corrections, the quark loops, and the magnetic penguin evaluated in the perturbative QCD (PQCD) approach have saturated the experimental upper bound of the B^0 -> rho^0 rho^0 branching ratio, and do not help. The NLO PQCD predictions for the B^0 -> rho^\mp rho^\pm and B^\pm -> rho^\pm rho^0 branching ratios are consistent with the data. The inclusion of the NLO jet function from the soft-collinear effective theory into the QCD-improved factorization approach, though enhancing the B^0 -> pi^0 pi^0 branching ratio sufficiently, overshoots the bound of the B^0 -> rho^0 rho^0 branching ratio, and deteriorates the predictions for the B^\pm -> pi^0 K^\pm and B^0 -> pi^\mp K^\pm direct CP asymmetries.Comment: 15 pages, 1 figure, REVTeX4; title changed, version to appear in Phys. Rev.

    A Potential Energy Landscape Study of the Amorphous-Amorphous Transformation in H2_2O

    Full text link
    We study the potential energy landscape explored during a compression-decompression cycle for the SPC/E (extended simple point charge) model of water. During the cycle, the system changes from low density amorphous ice (LDA) to high density amorphous ice (HDA). After the cycle, the system does not return to the same region of the landscape, supporting the interesting possibility that more than one significantly different configuration corresponds to LDA. We find that the regions of the landscape explored during this transition have properties remarkably different from those explored in thermal equilibrium in the liquid phase

    Influence of deflocculant on the isoelectric point of refractory powders: Considerations on the action of deflocculant

    Get PDF
    Isoelectric point changes in suspensions of refractory materials vis-a-vis the role of deflocculants used in monolithic refractories were investigated by considering the mineral compositions and adsorbed ions in four kinds of clay. Three types of curves represented the relation between the isoelectric point and the deflocculant. The surface charge of clay particles in the suspensions became negative as a result of the deflocculant, since the isoelectric point of suspensions decreased as the deflocculant was added. The isoelectric point changes of calcined alumina were also compared with those of the clays, and a similar phenomenon was observed, except that the deflocculant dispersed the calcined alumina better than it did the clays. A simple model was used to analyze the results

    Ice XII in its second regime of metastability

    Full text link
    We present neutron powder diffraction results which give unambiguous evidence for the formation of the recently identified new crystalline ice phase[Lobban et al.,Nature, 391, 268, (1998)], labeled ice XII, at completely different conditions. Ice XII is produced here by compressing hexagonal ice I_h at T = 77, 100, 140 and 160 K up to 1.8 GPa. It can be maintained at ambient pressure in the temperature range 1.5 < T < 135 K. High resolution diffraction is carried out at T = 1.5 K and ambient pressure on ice XII and accurate structural properties are obtained from Rietveld refinement. At T = 140 and 160 K additionally ice III/IX is formed. The increasing amount of ice III/IX with increasing temperature gives an upper limit of T ~ 150 K for the successful formation of ice XII with the presented procedure.Comment: 3 Pages of RevTeX, 3 tables, 3 figures (submitted to Physical Review Letters

    Interplay Between Time-Temperature-Transformation and the Liquid-Liquid Phase Transition in Water

    Full text link
    We study the TIP5P water model proposed by Mahoney and Jorgensen, which is closer to real water than previously-proposed classical pairwise additive potentials. We simulate the model in a wide range of deeply supercooled states and find (i) the existence of a non-monotonic ``nose-shaped'' temperature of maximum density line and a non-reentrant spinodal, (ii) the presence of a low temperature phase transition, (iii) the free evolution of bulk water to ice, and (iv) the time-temperature-transformation curves at different densities.Comment: RevTeX4, 4 pages, 4 eps figure

    Large electroweak penguin contribution in B -> K pi and pi pi decay modes

    Full text link
    We discuss about a possibility of large electroweak penguin contribution in B -> K pi and pi pi from recent experimental data. The experimental data may be suggesting that there are some discrepancies between the data and theoretical estimation in the branching ratios of them. In B -> K pi decays, to explain it, a large electroweak penguin contribution and large strong phase differences seem to be needed. The contributions should appear also in B -> pi pi. We show, as an example, a solution to solve the discrepancies in both B -> K pi and B -> pi pi. However the magnitude of the parameters and the strong phase estimated from experimental data are quite large compared with the theoretical estimations. It may be suggesting some new physics effects are including in these processes. We will have to discuss about the dependence of the new physics. To explain both modes at once, we may need large electroweak penguin contribution with new weak phases and some SU(3) breaking effects by new physics in both QCD and electroweak penguin type processes.Comment: 23 pages, 9 figure
    corecore