14 research outputs found

    Contribution of germline BRCA1 and BRCA2 sequence alterations to breast cancer in Northern India

    Get PDF
    BACKGROUND: A large number of distinct mutations in the BRCA1 and BRCA2 genes have been reported worldwide, but little is known regarding the role of these inherited susceptibility genes in breast cancer risk among Indian women. We investigated the distribution and the nature of BRCA1 and BRCA2 germline mutations and polymorphisms in a cohort of 204 Indian breast cancer patients and 140 age-matched controls. METHOD: Cases were selected with regard to early onset disease (≤40 years) and family history of breast and ovarian cancer. Two hundred four breast cancer cases along with 140 age-matched controls were analyzed for mutations. All coding regions and exon-intron boundaries of the BRCA1 and BRCA2 genes were screened by heteroduplex analysis followed by direct sequencing of detected variants. RESULTS: In total, 18 genetic alterations were identified. Three deleterious frame-shift mutations (185delAG in exon 2; 4184del4 and 3596del4 in exon 11) were identified in BRCA1, along with one missense mutation (K1667R), one 5'UTR alteration (22C>G), three intronic variants (IVS10-12delG, IVS13+2T>C, IVS7+38T>C) and one silent substitution (5154C>T). Similarly three pathogenic protein-truncating mutations (6376insAA in exon 11, 8576insC in exon19, and 9999delA in exon 27) along with one missense mutation (A2951T), four intronic alterations (IVS2+90T>A, IVS7+75A>T, IVS8+56C>T, IVS25+58insG) and one silent substitution (1593A>G) were identified in BRCA2. Four previously reported polymorphisms (K1183R, S1613G, and M1652I in BRCA1, and 7470A>G in BRCA2) were detected in both controls and breast cancer patients. Rare BRCA1/2 sequence alterations were observed in 15 out of 105 (14.2%) early-onset cases without family history and 11.7% (4/34) breast cancer cases with family history. Of these, six were pathogenic protein truncating mutations. In addition, several variants of uncertain clinical significance were identified. Among these are two missense variants, one alteration of a consensus splice donor sequence, and a variant that potentially disrupts translational initiation. CONCLUSION: BRCA1 and BRCA2 mutations appear to account for a lower proportion of breast cancer patients at increased risk of harboring such mutations in Northern India (6/204, 2.9%) than has been reported in other populations. However, given the limited extent of reported family history among these patients, the observed mutation frequency is not dissimilar from that reported in other cohorts of early onset breast cancer patients. Several of the identified mutations are unique and novel to Indian patients

    Multiple Analytical Approaches Reveal Distinct Gene-Environment Interactions in Smokers and Non Smokers in Lung Cancer

    Get PDF
    Complex disease such as cancer results from interactions of multiple genetic and environmental factors. Studying these factors singularly cannot explain the underlying pathogenetic mechanism of the disease. Multi-analytical approach, including logistic regression (LR), classification and regression tree (CART) and multifactor dimensionality reduction (MDR), was applied in 188 lung cancer cases and 290 controls to explore high order interactions among xenobiotic metabolizing genes and environmental risk factors. Smoking was identified as the predominant risk factor by all three analytical approaches. Individually, CYP1A1*2A polymorphism was significantly associated with increased lung cancer risk (OR = 1.69;95%CI = 1.11–2.59,p = 0.01), whereas EPHX1 Tyr113His and SULT1A1 Arg213His conferred reduced risk (OR = 0.40;95%CI = 0.25–0.65,p<0.001 and OR = 0.51;95%CI = 0.33–0.78,p = 0.002 respectively). In smokers, EPHX1 Tyr113His and SULT1A1 Arg213His polymorphisms reduced the risk of lung cancer, whereas CYP1A1*2A, CYP1A1*2C and GSTP1 Ile105Val imparted increased risk in non-smokers only. While exploring non-linear interactions through CART analysis, smokers carrying the combination of EPHX1 113TC (Tyr/His), SULT1A1 213GG (Arg/Arg) or AA (His/His) and GSTM1 null genotypes showed the highest risk for lung cancer (OR = 3.73;95%CI = 1.33–10.55,p = 0.006), whereas combined effect of CYP1A1*2A 6235CC or TC, SULT1A1 213GG (Arg/Arg) and betel quid chewing showed maximum risk in non-smokers (OR = 2.93;95%CI = 1.15–7.51,p = 0.01). MDR analysis identified two distinct predictor models for the risk of lung cancer in smokers (tobacco chewing, EPHX1 Tyr113His, and SULT1A1 Arg213His) and non-smokers (CYP1A1*2A, GSTP1 Ile105Val and SULT1A1 Arg213His) with testing balance accuracy (TBA) of 0.6436 and 0.6677 respectively. Interaction entropy interpretations of MDR results showed non-additive interactions of tobacco chewing with SULT1A1 Arg213His and EPHX1 Tyr113His in smokers and SULT1A1 Arg213His with GSTP1 Ile105Val and CYP1A1*2C in nonsmokers. These results identified distinct gene-gene and gene environment interactions in smokers and non-smokers, which confirms the importance of multifactorial interaction in risk assessment of lung cancer

    A Prelude to Biogermylene Chemistry

    No full text
    Abstract: The biological applications of germylenes remain an unconceivable domain owing to their unstable nature. We report the isolation of air, water, and culture-medium stable germylene DPMGeOH (3) and its potential biological application (DPM = dipyrromethene ligand). Compound 3 exhibits antiproliferative effects comparable to that of cisplatin in human cancer cells. The cytotoxicity of compound 3 on normal epithelial cells is minimal and is similar to that of the currently used anti-cancer drugs. These findings provide a framework for a plethora of biological studies using germylenes and have important implications for low-valent main group chemistry.</p

    Dysbiosis Disrupts Gut Immune Homeostasis and Promotes Gastric Diseases

    No full text
    Perturbation in the microbial population/colony index has harmful consequences on human health. Both biological and social factors influence the composition of the gut microbiota and also promote gastric diseases. Changes in the gut microbiota manifest in disease progression owing to epigenetic modification in the host, which in turn influences differentiation and function of immune cells adversely. Uncontrolled use of antibiotics, chemotherapeutic drugs, and any change in the diet pattern usually contribute to the changes in the colony index of sensitive strains known to release microbial content in the tissue micromilieu. Ligands released from dying microbes induce Toll-like receptor (TLR) mimicry, skew hypoxia, and cause sterile inflammation, which further contributes to the severity of inflammatory, autoimmune, and tumorous diseases. The major aim and scope of this review is both to discuss various modalities/interventions across the globe and to utilize microbiota-based therapeutic approaches for mitigating the disease burden

    Genomic Alterations in Breast Cancer Patients in Betel Quid and Non Betel Quid Chewers

    No full text
    <div><p>Betel Quid (BQ) chewing independently contributes to oral, hepatic and esophageal carcinomas. Strong association of breast cancer risk with BQ chewing in Northeast Indian population has been reported where this habit is prodigal. We investigated genomic alterations in breast cancer patients with and without BQ chewing exposure. Twenty six BQ chewers (BQC) and 17 non BQ chewer (NBQC) breast cancer patients from Northeast India were analyzed for genomic alterations and pathway networks using SNP array and IPA. BQC tumors showed significantly (P<0.01) higher total number of alterations, as compared with NBQC tumors, 48±17% versus 32±25 respectively. Incidence of gain in fragile sites in BQC tumors were significantly (P<0.001) higher as compared with NBQC tumors, 34 versus 23% respectively. Two chromosomal regions (7q33 and 21q22.13) were significantly (p<0.05) associated with BQC tumors while two regions (19p13.3–19p12 and 20q11.22) were significantly associated with NBQC tumors. GO terms oxidoreductase and aldo-keto reductase activity in BQC tumors in contrast to G-protein coupled receptor protein signaling pathway and cell surface receptor linked signal transduction in NBQC tumors were enriched in DAVID. One network “Drug Metabolism, Molecular Transport, Nucleic Acid Metabolism” including genes AKR1B1, AKR1B10, ETS2 etc in BQC and two networks “Molecular Transport, Nucleic Acid Metabolism, Small Molecule Biochemistry” and “Cellular Development, Embryonic Development, Organismal Development” including genes RPN2, EMR3, VAV1, NNAT and MUC16 etc were seen in NBQC. Common alterations (>30%) were seen in 27 regions. Three networks were significant in common regions with key roles of PTK2, RPN2, EMR3, VAV1, NNAT, MUC16, MYC and YWHAZ genes. These data show that breast cancer arising by environmental carcinogens exemplifies genetic alterations differing from those observed in the non exposed ones. A number of genetic changes are shared in both tumor groups considered as crucial in breast cancer progression.</p> </div

    Common Networks: Cellular Movement, Connective Tissue Development and Function, Cellular Assembly and Organization (Network 1), Cell-To-Cell Signaling and Interaction, Tissue Development, Organismal Injury and Abnormalities (Network 2), Cell Morphology, Cellular Assembly and Organization, Cellular Compromise (Network 3).

    No full text
    <p>Common Networks: Cellular Movement, Connective Tissue Development and Function, Cellular Assembly and Organization (Network 1), Cell-To-Cell Signaling and Interaction, Tissue Development, Organismal Injury and Abnormalities (Network 2), Cell Morphology, Cellular Assembly and Organization, Cellular Compromise (Network 3).</p
    corecore