6 research outputs found

    Experimental study of microwave pulse compression using a five-fold helically corrugated waveguide

    Get PDF
    This paper presents the experimental study of microwave pulse compression using a five-fold helically corrugated waveguide. In the experiment, the maximum power compression ratio of 25.2 was achieved by compressing an input microwave pulse of 80 ns duration and 9.65 GHz to 9.05 GHz frequency swept range into a 1.6 ns Gaussian-envelope pulse. For an average input power of 5.8 kW generated by a conventional traveling wave tube, a peak pulse output power of 144.8 kW was measured corresponding to an energy efficiency of 66.3%

    Design and experiments of a five-fold helically corrugated waveguide for microwave pulse compression

    Get PDF
    Metal waveguide can be used as a dispersive medium to convert long duration, lower power pulses into short, higher peak power pulses. This provides an advanced method to generate radiation with gigawatts power in the millimeter and sub-millimeter wavelength range by compressing a megawatt level long duration pulse. In this paper, a five-fold helically corrugated waveguide operating in X-band was designed and constructed. The experiments conducted show that a 5.75 kW average power microwave pulse with a 6% bandwidth and duration of 80 ns can be compressed into a 144.8 kW, 1.6 ns pulse with a power compression factor of 25.2
    corecore