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Experimental Study ofMicrowave Pulse Compression

Using a Five-Fold Helically Corrugated Waveguide
Liang Zhang, Sergey V. Mishakin, Wenlong He, Sergey V. Samsonov, Michael McStravick,

Gregory G. Denisov, Adrian W. Cross, Vladimir L. Bratman, Colin G. Whyte,
Craig W. Robertson, Alan R. Young, Kevin Ronald, and Alan D. R. Phelps

Abstract�This paper presents the experimental study of mi-
crowave pulse compression using a Þve-fold helically corrugated

waveguide. In the experiment, the maximum power compression

ratio of 25.2 was achieved by compressing an input microwave
pulse of 80-ns duration and 9.65�9.05-GHz frequency swept range

into a 1.6-ns Gaussian-envelope pulse. For an average input power

of 5.8 kW generated by a conventional traveling-wave tube, a peak
pulse output power of 144.8 kW was measured corresponding to

an energy efÞciency of 66.3%.

Index Terms�Helically corrugated waveguides (HCWs), mi-

crowave pulse compression, mode coupling.

I. INTRODUCTION

P ULSE compression technology that converts long-dura-

tion low-power pulses into short high peak-power pulses

is commonly used in applications that require high peak power

and pulsed operation, such as sonar and radar systems [1], [2].

Pulse compression can be used to improve the space and time

resolution, as well as the signal-to-noise ratio of radar systems

[3] and image brightness in multiphoton imaging systems [4]. It

can also be used to generate intense ultra-short laser pulses for

studying physical phenomena in short time scales [5]�[7].

By compressing a multi-megawatt-long duration pulse with

an appropriate compression ratio, it is possible to generate gi-

gawatt-level microwave radiation, which is otherwise extremely

difÞcult to realize. Gigawatt-level microwave radiation can be

achieved by a frequency-swept multi-megawatt pulse generated

by a high power vacuum electronic device acting as the input
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source for a microwave pulse compressor based on a high-fold

helically corrugated waveguide (HCW) [8].

The use of a metal waveguide as a dispersive medium to gen-

erate high peak-power microwaves was proposed [9]. The prin-

ciple is to use a swept frequency modulated pulse train with a

monotonically increasing group velocity propagating through

the waveguide. The tail of the pulse will overtake its leading

edge, which results in pulse shortening and growth in power am-

plitude if the losses are small. The maximum compression ratio

happens at the exit of the waveguide where all the frequency

components arrive at the same time. The compression ratio is

calculated from the electromagnetic wave propagation along an

isotropic dispersive medium and is given by

(1)

where and are the group velocities of the beginning and

the end frequencies of the microwave pulse. To achieve a high

compression ratio , the dispersive media requires operation

over a wide frequency band to give a large with a large

monotonic group velocity difference in the operating frequency

band, which allows a large value. This provides

the capability of supporting a long pulse width in a medium of

speciÞc length , as well as a low equivalent loss factor [9].

A smooth waveguide can also have a relatively large mono-

tonic group velocity difference over a wide frequency range.

From the dispersion curve of the smooth waveguide, the group

velocity has a large change near the cutoff frequency (shown

as and in Fig. 1) and the group velocity changes less at

the frequencies further away from the cutoff frequency. There-

fore, most of the frequency range suitable for the pulse com-

pression is near the cutoff. However, the large ohmic loss close

to cutoff prevents a high compression ratio being achieved re-

sulting in low energy efÞciency as evidenced by a compression

ratio of 7 measured in an experiment using a 19.2-mm-diam-

eter smooth 6.6-m-long circular waveguide at X-band [9]. The

new HCW studied in this paper demonstrates much better per-

formance than the smooth waveguide. The cross-sectional and

longitudinal periodicities of an HCW allow new operating eigen

modes ( and ) to exist by resonant coupling of modes 1

and 2 in the circular waveguide, as shown in Fig. 1. Around the

coupling point , the group velocity of operating mode

is monotonically decreasing over a relatively wide frequency

band as frequency increases. also has a low ohmic loss at

this frequency band as it is far from its cutoff. A further advan-

tage of the HCW is that because the rapid change in group ve-
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Fig. 1. Mode coupling in the HCW. The eigenmodes and are the result

of the coupling of modes 1 and 2 in the circular waveguide. The group velocity

of operating mode is monotonically decreasing over a relatively wide fre-

quency band as frequency increases around the coupling point .

locity is achieved using an inßexion in the dispersion curve, an

ampliÞer can be used as the input source. On the other hand, if

the compressor operates at near cutoff frequency, then a big re-

ßection could occur due to a small difference in the waveguide

diameter as a consequence of the tolerance achieved during ma-

chining. The reßectionmay cause feedback oscillations and pos-

sible damage to the ampliÞer. The use of the HCW can mitigate

such risks.

The HCW has attracted signiÞcant interest and has been suc-

cessfully used in the gyrotron traveling-wave ampliÞer (gyro-

TWA) [10], [11], and gyrotron backward-wave oscillator (gyro-

BWO) [12]�[14] to improve the beam�wave interaction band-

width in both types of devices. The Þrst pulse compression ex-

periment using the HCW was carried out on a three-fold struc-

ture. The spatial harmonic mode in the circular waveguide

was chosen to couple with the mode to generate the oper-

ating mode. Using these two low-order modes, the optimum fre-

quency sweep signal was investigated and a compression factor

of 25 in the peak power was obtained [15]. An 80-ns microwave

pulse with an average power of 5.6 kW and a 5% frequency

sweep in X-band was compressed into a Gaussian-shaped wave-

form with a 1.5-ns full width at half maximum (FWHM) with

a peak power of 140 kW. The maximum power-handling ca-

pability of this 29.4-mm mean diameter three-fold HCW can be

calculated from themaximum Þeld inside the HCW and the con-

tinuous microwave breakdown Þeld. The power-handling ca-

pacity of the three-fold HCW in air was calculated to be about

30 MW. Although in pulse operating mode the breakdown Þeld

can be much higher than in continuous mode operation, about 1

MV/cm for 10-ns pulse duration [16], [17], it is still difÞcult to

handle gigawatt-level microwave pulses as the power-handling

capability is heavily dictated by the waveguide diameter. In this

paper, the pulse compression experiment using a Þve-fold HCW

with a larger average diameter of 65.7 mm for enhanced power

handling is presented. The dispersion of and preliminary com-

pression experiments based on the Þve-fold HCW have been

brießy reported in [18]. In this paper, the optimized experi-

mental results are presented with comparisons to new simula-

tion results from the microwave pulse compressor. Also, to give

the readers a full picture of the experiment, the power-handling

capability and the construction of the Þve-fold HCW are pre-

sented in this paper with an expanded theory of the pulse com-

pression.

This paper is organized as follows. Section II describes the

design of the waveguide components for microwave compres-

sion. Section III presents the construction and measurement of

the waveguide components. In Section IV, the experimental and

simulation results on the pulse compression are reported and

discussed. Section V presents the conclusion.

II. DESIGN OF THE WAVEGUIDE COMPONENTS FOR

MICROWAVE COMPRESSION

The HCW was designed to have a mean waveguide diameter

at least twice that of the three-fold one while operating in the

same frequency range. High-order-mode operation was there-

fore required and it was possible to achieve this by the coupling

of the spatial harmonic mode with the mode, which

determined a fold number of 5 for the HCW from the azimuthal

synchronism condition to be satisÞed, where

and are the azimuthal indices of the two coupling modes

and is the azimuthal period of the waveguide. and

indicates an opposite rotation of the mode

[19]. The dispersion characteristic can be changed by varying

the HCW's geometry whose proÞle is governed by the expres-

sion in a cylindrical co-

ordinate system . The mean radius mainly decides

the operating frequency range; the corrugated depth mostly

controls the coupling strength, and the period directly affects

the position of the coupling point. The design of the HCW for

pulse compression requires accurate prediction of the dispersion

curve as the group velocity is deÞned as .

A small change in the dispersion relation will cause a large

difference when calculating the group velocity, especially when

the HCW operates in the small range. Different methods

have been developed to calculate the dispersion curve with dif-

ferent accuracies and computing times, including the 1-D an-

alytical method [19], [20], the specialized 2-D Þnite-element

method (FEM) [21], and the full 3-D Þnite-difference time-do-

main method (FDTD), or the FEM [22]. The 1-D analytical

method is based on the method of perturbation. It is the fastest

method and is useful for preliminary design and setting the pa-

rameter range of the compressor, but is not accurate at large cor-

rugation depths. The 3-D FEM simulation typically takes 4 h on

a PC with a four-core processor at 2.8 GHz and 16-GB memory

to simulate one period of the Þve-fold HCW. It is not suitable

for optimizing the parameters, however, it is able to provide

the dynamic Þeld information inside the waveguide. The 2-D

simulation based on a helicoidal coordinate transform provides

a good balance between the accuracy and the computing time

(5 min using the same hardware as compared to the 3-D case),

although it is more complicated to develop the in-house code

to implement an FEM solver with a helicoidal coordinate. The

optimal dimensions used in the experiments were derived to

be a Þve-fold HCW with mm mm

and mm. The total length of 2.86 m was decided

by the optimum tradeoff between the compression ratio and the

energy efÞciency. The simulated dispersion curves by the dif-

ferent methods and the experimental measurement were shown

in [18].
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Fig. 2. (a) Simulation model in the CST Microwave Studio. (b) Electric Þeld

and the electric Þeld on the wall of the three- and Þve-fold HCW at 9.6 GHz.

The 3-D FDTD simulation code CST Microwave Studio was

used to study the dynamic electric and magnetic Þelds inside

the HCW. In the simulation, the HCW was connected with a

HCW taper whose corrugation is linearly reduced to zero and

then followed by a circular waveguide, as shown in Fig. 2(a).

A circularly polarized mode was stimulated at the input

port for the three-fold HCW simulations and mode for the

Þve-fold HCW to produce the desired operating eigenmodes.

From the simulations, the maximum electric Þeld inside the

Þve-fold HCW was 0.7 kV/mm at 1-MW input power, which

is 37.4% of the maximum electric Þeld in the three-fold HCW.

The maximum power capability of the Þve-fold HCW is about

seven times higher as compared with the three-fold one oper-

ating in the same frequency range. Fig. 2(b) shows the contour

plot of the electric Þelds at the cross section of the three- and

Þve-fold HCWs, as well as the electric Þeld strength at the wall

of the three- and Þve-fold HCWs.

Compared with exciting the fundamental circularly polarized

mode in the three-fold HCW, it is more complicated to ex-

cite the circularly polarized mode in the Þve-fold HCW.

A mode convertor was therefore designed to transfer the input

mode into the mode with sufÞciently high mode

conversion purity as well as low reßection at the oper-

ating frequency band. The principle of operation is based on

mode-selection Bragg scattering by a waveguide with a peri-

odic corrugation. The mode convertor requires a high coupling

coefÞcient between the incident and the output waves, which

can be analytically calculated from the coupled mode theory

based on the perturbation method. From the azimuthal synchro-

nism condition, a fold number of 4 is required. The period of

the mode convertor will satisfy the axial synchronism condition

, where and are the axial wavenumbers

of the mode and the spatial harmonic of the mode

Fig. 3. Connection and cross-sectional shape of the waveguide structures.

[23], [24]. The geometry was reÞned and veriÞed by using the

3-D FDTD code CST Microwave Studio after the preliminary

theoretical analysis. More than 95% of the power of the

mode was converted into the mode in the frequency range

of 8.9�9.9 GHz and the reßection coefÞcient of the mode

is less than 30 dB. The Þve-fold HCW and the mode convertor

both contain tapering sections, which linearly reduce the cor-

rugated depth to zero, thereby converting from helical geome-

tries into circular shapes to ensure the wave is smoothly

converted to the operating eigenwave. The four-fold mode con-

vertor requires a circular polarized wave as the input,

therefore an elliptical polarizer was designed and constructed

that was able to convert the polarization of the wave

between linear polarization and circular polarization [25]. The

center frequency was set at 9.3 GHz and it was able to achieve

more than 98% energy conversion from one polarization to the

other in a frequency band of over 10%. Four circular waveguide

tapers (two at each side of the compressor) were used to match

the different radii between the waveguide components as well as

to cut off the undesired reßection for maintaining mode purity

inside the waveguide. The connection of the waveguide struc-

ture and the cross-section view of each component are shown in

Fig. 3. At the other end of the Þve-fold HCW, the same conÞg-

uration was used.

III. CONSTRUCTION AND MEASUREMENT OF

THE WAVEGUIDE COMPONENTS

The Þve-fold HCW and four-fold mode convertor were con-

structed separately. The inner surface of the HCW and the mode

convertors were machined using facilities at Strathclyde Uni-

versity, Glasgow, U.K., to manufacture positive aluminumman-

drels using a four-axis computer numerical control (CNC) ma-

chine with the copper grown on the aluminum by electroforming

with a thickness of 6 mm. Finally, the aluminum was chemi-

cally dissolved to leave the copper waveguides. The machined

aluminum formers and the Þnal copper waveguides are shown

in Fig. 4. The waveguides were then carefully joined and tight-

ened together. Care was taken to match the cross sections of the

Þve-fold HCW pieces because of their irregular shape and to

ensure the system was well aligned.

The mode convertor, elliptical polarizer, and waveguide ta-

pers are also dispersive. Although they are relatively short com-

pared with the Þve-fold HCW, they will still contribute to the

whole dispersion curve and affect the optimal frequency sweep.

In the 3-D FDTD simulation, the compression ratio drops from
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Fig. 4. (a) Machined aluminum formers. (b) Final copper waveguides.

Fig. 5. Simulated and measured: (a) dispersion characteristics and group ve-

locity and (b) losses of the pulse compressor.

22 to 9 if the dispersion of the other components besides the

Þve-fold HCW is not taken into account. Therefore, the disper-

sion characteristics of the whole waveguide structure that in-

cludes all the waveguide components was measured using an

Anritsu 37397A vector network analyzer (VNA). The simu-

lated and measured dispersion characteristics, group velocity,

and the losses are shown in Fig. 5. The difference of the disper-

sion curve between the simulation and measurement is mainly

caused by the machining tolerance of the waveguide compo-

nents and the imperfect alignment of the waveguides. The sharp

spikes in themeasurement and simulation losses are due to small

cavity effects of the elliptical polarizers and the mode conver-

tors. The relatively large loss at the spike frequencies will result

in smaller Þeld amplitude at these frequencies. From (1), the

losses will result in the reduction of the compression factor as

Fig. 6. (a) Schematic and (b) photograph of the microwave pulse compression

experimental setup.

well as the energy efÞciency. From the group velocity, the fre-

quency band that can be used for compressing the microwave

pulse was 9.05�9.65 GHz.

IV. PULSE COMPRESSION EXPERIMENTAL RESULTS

An input pulse in rectangular shape was used in the experi-

ment. Its frequency components were calculated from the mea-

sured dispersion curve of the whole device. The starting fre-

quency was 9.6 GHz, which corresponds to the minimum group

velocity (about 0.15 , where is the speed of light) in the com-

pressor. The ending frequency was 9.1 GHz, which has the max-

imum group velocity (about 0.5 ). The inverse of the group ve-

locities of the frequency components are a linearly decreasing

function of the entrance time of the input pulse. The duration

of the ßat part of the input pulse was 63.8 ns, and both the rise

and fall time of the pulse were 20 ns. To generate the 0.6-GHz

bandwidth frequency sweeping signal as the input, an arbitrary

waveform generator (AWG) (model: Agilent N6030A) which is

capable to generate a 500-MHz modulated signal was chosen

and programmed. The 300-MHz frequency sweeping signal

was then mixed with a 9.3-GHz oscillation signal by a vector

signal generator (VSG) (model: Agilent E8257D) to generate

the frequency sweeping signal at the frequency range from 9.65

to 9.05 GHz for pulse compression. To demonstrate the ex-

periment at a multiple kilowatts power level, a conventional

X-band traveling-wave tube (TWT) from TMD Ltd. was used

to amplify the low-power input signal to a few kilowatts. The

high-power voltage signals from the TWT and the output com-

pressed pulses was recorded by a 20-GHz digitizing storage os-

cilloscope (DSO) (model: Agilent DSOX92004A), which was

protected with the use of a 10-dB coupler with additional
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Fig. 7. Simulated and measured compressed pulses. The detail of the compres-

sion factors for the different cases are shown in the inset.

Fig. 8. Measured and simulated microwave outputs from the compression ex-

periment and input microwave waveform and frequency sweep.

50-dB attenuation. The setup of the pulse compression exper-

iment is shown in Fig. 6.

The compressed output voltage signals can be calculated

quickly using the 1-D analytical simulation in which the

microwave pulse propagation process in the compressor can

be approximated as a plane wave moving forward along an

isotropic dispersive medium, and the dispersive medium has

an equivalent dispersion characteristic of the whole waveguide

system. The 3-D FDTD simulation was also used to study the

Þeld evolution during the compression process. The output

voltage signals from the 1-D analytical simulation, 3-D FDTD

simulation, and the experimental measurement were analyzed

to obtain the compression ratio. The experimental voltage

signals were transformed into the complex values to get the

phase information, as well as the imaginary part of the signal

by using the inverse Fourier transform. The power of the sig-

nals was then calculated from the complex values. The power

compression factors for the three cases are 22.2, 21.5, and 21.9,

respectively, and agree well with each other. The input signal

and the compressed output signal are shown as Fig. 7. About

61.5% of the input energy was compressed into the main body

of the output pulse and the pulse width was 1.9 ns (here it

assumes the main body of the output pulse is a Gaussian-like

waveform with a 1.9-ns FWHM).

By further adjustments on the frequency sweeping signal, like

changing the frequency on the rising and falling edges of the

pulse in the optimum frequency swept signal, or increasing the

pulse duration, which means larger input energy, it was possible

to achieve an even higher compression factor. For example, the

best compression factor of 25.2 was obtained using a frequency

sweeping signal with an 80-ns ßat part in the pulse, with an av-

erage power of the input pulse of about 5.80 kW, which resulted

in a peak power of the compressed pulse of 144.8 kW with a

pulse width of 1.6 ns, as shown in Fig. 8. For this compression

ratio of 25.2, the energy conversion efÞciency was measured to

be 66.3%.

V. CONCLUSION

The paper has presented the operating principle, the design,

and the experimental study of microwave pulse compression. To

achieve a high power-handling capability, a Þve-fold HCW that

operates at a higher order mode was employed. The dimensions

of the HCWwere initially studied using a 1-D analytical method

based on the perturbation theory. They were further optimized

by using the 2-D FEM based on the helicoidal coordinate trans-

form, and the dispersion curve was veriÞed by the 3-D FDTD

code CST Microwave Studio and measurement of the disper-

sion using a VNA. A compression ratio of 25.2 was achieved

by compressing an input microwave pulse of 80-ns duration and

9.65�9.05-GHz frequency swept range into a 1.6-ns Gaussian-

envelope pulse. As a result, a seven times greater power-han-

dling capability was achieved as compared to the lower mode

pulse compressor. The Þve-fold HCW provides a promising

way to generate gigawatt-level microwave radiation by com-

pressing multi-GW-level frequency-swept output power from

relativistic backward wave oscillators. It advances the Þeld of

ultra-high-power microwave pulse generation, which has a wide

range of beneÞciaries ranging from security screening to mate-

rials testing.
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