557 research outputs found

    Local Control of Reactive Power by Distributed Photovoltaic Generators

    Full text link
    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.Comment: 6 pages, 5 figures, submitted to IEEE SmartGridComm 201

    High-harmonic generation: taking control of polarization

    Get PDF
    The ability to control the polarization of short-wavelength radiation generated by high-harmonic generation is useful not only for applications but also for testing conservation laws in physics

    On possible implications of gluon number fluctuations in DIS data

    Full text link
    We study the effect of gluon number fluctuations (Pomeron loops) on deep inelastic scattering (DIS) in the fixed coupling case. We find that the description of the DIS data is improved once gluon number fluctuations are included. Also the values of the parameters, like the saturation exponent and the diffussion coefficient, turn out reasonable and agree with values obtained from numerical simulations of toy models which take into account fluctuations. This outcome seems to indicate the evidence of geometric scaling violations, and a possible implication of gluon number fluctuations, in the DIS data. However, we cannot exclude the possibility that the scaling violations may also come from the diffusion part of the solution to the BK-equation, instead of gluon number fluctuations.Comment: 9 pages, 2 figures; references added, minor changes, matches published versio

    Using Higher Moments of Fluctuations and their Ratios in the Search for the QCD Critical Point

    Full text link
    The QCD critical point can be found in heavy ion collision experiments via the non-monotonic behavior of many fluctuation observables as a function of the collision energy. The event-by-event fluctuations of various particle multiplicities are enhanced in those collisions that freeze out near the critical point. Higher, non-Gaussian, moments of the event-by-event distributions of such observables are particularly sensitive to critical fluctuations, since their magnitude depends on the critical correlation length to a high power. We present quantitative estimates of the contribution of critical fluctuations to the third and fourth moments of the pion, proton and net proton multiplicities, as well as estimates of various measures of pion-proton correlations, all as a function of the same five non-universal parameters, one of which is the correlation length that parametrizes proximity to the critical point. We show how to use nontrivial but parameter independent ratios among these more than a dozen fluctuation observables to discover the critical point. We also construct ratios that, if the critical point is found, can be used to overconstrain the values of the non-universal parameters.Comment: 16 pages, 5 figures. Version to appear in PRD. Footnote and reference adde

    Enhancement and suppression of tunneling by controlling symmetries of a potential barrier

    Full text link
    We present a class of 2D systems which shows a counterintuitive property that contradicts a semi classical intuition: A 2D quantum particle "prefers" tunneling through a barrier rather than traveling above it. Viewing the one particle 2D system as the system of two 1D particles, it is demonstrated that this effect occurs due to a specific symmetry of the barrier that forces excitations of the interparticle degree of freedom that, in turn, leads to the appearance of an effective potential barrier even though there is no "real" barrier. This phenomenon cannot exist in 1D.Comment: 10 pages and 7 figure

    Coherent-incoherent transition in the sub-Ohmic spin-boson model

    Full text link
    We study the spin-boson model with a sub-Ohmic bath using a variational method. The transition from coherent dynamics to incoherent tunneling is found to be abrupt as a function of the coupling strength α\alpha and to exist for any power 0<s<10 < s< 1, where the bath coupling is described by J(ω)∼αωsJ(\omega) \sim \alpha \omega^{s}. We find non-monotonic temperature dependence of the two-level gap K~\tilde{K} and a re-entrance regime close to the transition due to non-adiabatic low-frequency bath modes. Differences between thermodynamic and dynamic conditions for the transition as well as the limitations of the simplified bath description are discussed.Comment: 12 pages, 4 figure

    Occlusive Therapy in Atopic Dermatitis

    Get PDF
    • …
    corecore