41 research outputs found

    Passivation of a CoCrMo PVD Alloy with Biomedical Composition under Simulated Physiological Conditions Studied by EQCM and XPS

    Full text link
    Kinetics of passive film growth on a CoCrMo biomedical alloy have been studied using the Electrochemical Quartz Crystal Microbalance technique (EQCM) in phosphate buffer solution at room temperature and 37◦C. CoCrMo layers were deposited on the quartz crystals by physical vapor deposition (PVD) reaching a dense and compact deposition film with fine-grain structure. EQCM measurements were performed under potentiodynamic and potentiostatic conditions (at applied passive and transpassive potentials). Furthermore, ex-situ X-ray Photoelectron Spectroscopy (XPS) analysis of the each tested sample was performed at the end of the electrochemical test. The use ofEQCMallows distinguishing between electrochemical oxidation, passive and transpassive dissolution and passive film growth. In the passive domain the passive film thickness stabilizes within 200 to 400 s after an initial fast growth. The increase in current at the onset of the transpassive domain does not affect the passive dissolution rate. Only at higher potential dissolution rate increases due to the dissolution of Cr(VI), Co(III) and Mo(VI) species. The observed constant mass loss rate at transpassive potentials indicates that the passive film at these potentials is cracked or porous. Increasing temperature accelerates themass loss through the oxide/electrolyte interface enhancing the passive and transpassive dissolution and increasing the thickness of the oxide filmWe wish to express our gratitude to the Spanish Government, "Ministerio de Educacion" for the economic support and the post-graduate grant (Ref.AP2007-01243) and "Ministerio de Ciencia e Innovacion" for the financial support (Ref.MAT2011-22481), the assistance of N. Xanthopoulos with the XPS measurements and P. Mettraux with the PVD deposits and assistance with the scanning electron micrographs.Valero Vidal, C.; Igual Muñoz, AN.; Olsson, C.; Mischler, S. (2012). Passivation of a CoCrMo PVD Alloy with Biomedical Composition under Simulated Physiological Conditions Studied by EQCM and XPS. Journal of The Electrochemical Society. 159(5):233-243. https://doi.org/10.1149/2.090205jesS2332431595Katti, K. S. (2004). Biomaterials in total joint replacement. Colloids and Surfaces B: Biointerfaces, 39(3), 133-142. doi:10.1016/j.colsurfb.2003.12.002Okazaki, Y. (2002). Effect of friction on anodic polarization properties of metallic biomaterials. Biomaterials, 23(9), 2071-2077. doi:10.1016/s0142-9612(01)00337-4Virtanen, S., MiloĆĄev, I., Gomez-Barrena, E., TrebĆĄe, R., Salo, J., & Konttinen, Y. T. (2008). Special modes of corrosion under physiological and simulated physiological conditions. Acta Biomaterialia, 4(3), 468-476. doi:10.1016/j.actbio.2007.12.003MiloĆĄev, I., & Strehblow, H.-H. (2003). The composition of the surface passive film formed on CoCrMo alloy in simulated physiological solution. Electrochimica Acta, 48(19), 2767-2774. doi:10.1016/s0013-4686(03)00396-7Hodgson, A. W. E., Kurz, S., Virtanen, S., Fervel, V., Olsson, C.-O. A., & Mischler, S. (2004). Passive and transpassive behaviour of CoCrMo in simulated biological solutions. Electrochimica Acta, 49(13), 2167-2178. doi:10.1016/j.electacta.2003.12.043Muñoz, A. I., & Mischler, S. (2007). Interactive Effects of Albumin and Phosphate Ions on the Corrosion of CoCrMo Implant Alloy. Journal of The Electrochemical Society, 154(10), C562. doi:10.1149/1.2764238Hanawa, T., Hiromoto, S., & Asami, K. (2001). Characterization of the surface oxide film of a Co–Cr–Mo alloy after being located in quasi-biological environments using XPS. Applied Surface Science, 183(1-2), 68-75. doi:10.1016/s0169-4332(01)00551-7Hanawa, T. (2004). Metal ion release from metal implants. Materials Science and Engineering: C, 24(6-8), 745-752. doi:10.1016/j.msec.2004.08.018Fleury, C., Petit, A., Mwale, F., Antoniou, J., Zukor, D. J., Tabrizian, M., & Huk, O. L. (2006). Effect of cobalt and chromium ions on human MG-63 osteoblasts in vitro: Morphology, cytotoxicity, and oxidative stress. Biomaterials, 27(18), 3351-3360. doi:10.1016/j.biomaterials.2006.01.035Germain, M. A., Hatton, A., Williams, S., Matthews, J. B., Stone, M. H., Fisher, J., & Ingham, E. (2003). Comparison of the cytotoxicity of clinically relevant cobalt–chromium and alumina ceramic wear particles in vitro. Biomaterials, 24(3), 469-479. doi:10.1016/s0142-9612(02)00360-5MassĂš, A., Bosetti, M., Buratti, C., Visentin, O., Bergadano, D., & Cannas, M. (2003). Ion release and chromosomal damage from total hip prostheses with metal-on-metal articulation. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 67B(2), 750-757. doi:10.1002/jbm.b.10070Dumbleton, J. H., & Manley, M. T. (2005). Metal-on-Metal Total Hip Replacement. The Journal of Arthroplasty, 20(2), 174-188. doi:10.1016/j.arth.2004.08.011Milo?ev, I., & Strehblow, H.-H. (2000). The behavior of stainless steels in physiological solution containing complexing agent studied by X-ray photoelectron spectroscopy. Journal of Biomedical Materials Research, 52(2), 404-412. doi:10.1002/1097-4636(200011)52:23.0.co;2-zFukuzaki, S., Urano, H., & Nagata, K. (1996). Adsorption of bovine serum albumin onto metal oxide surfaces. Journal of Fermentation and Bioengineering, 81(2), 163-167. doi:10.1016/0922-338x(96)87596-9Malmsten, M. (1998). Formation of Adsorbed Protein Layers. Journal of Colloid and Interface Science, 207(2), 186-199. doi:10.1006/jcis.1998.5763Khan, M. A., Williams, R. L., & Williams, D. F. (1996). In-vitro corrosion and wear of titanium alloys in the biological environment. Biomaterials, 17(22), 2117-2126. doi:10.1016/0142-9612(96)00029-4Kanagaraja, S. (1996). Platelet binding and protein adsorption to titanium and gold after short time exposure to heparinized plasma and whole blood. Biomaterials, 17(23), 2225-2232. doi:10.1016/0142-9612(95)00311-8Yan, Y., Neville, A., & Dowson, D. (2007). Biotribocorrosion of CoCrMo orthopaedic implant materials—Assessing the formation and effect of the biofilm. Tribology International, 40(10-12), 1492-1499. doi:10.1016/j.triboint.2007.02.019Hallab, N. J., Mikecz, K., Vermes, C., Skipor, A., & Jacobs, J. J. (2001). Molecular and Cellular Biochemistry, 222(1/2), 127-136. doi:10.1023/a:1017979710992Kocijan, A., MiloĆĄev, I., Merl, D. K., & Pihlar, B. (2004). Electrochemical Study of Co-Based Alloys in Simulated Physiological Solution. Journal of Applied Electrochemistry, 34(5), 517-524. doi:10.1023/b:jach.0000021868.10122.96Valero Vidal, C., & Igual Muñoz, A. (2008). Electrochemical characterisation of biomedical alloys for surgical implants in simulated body fluids. Corrosion Science, 50(7), 1954-1961. doi:10.1016/j.corsci.2008.04.002Vidal, C. V., & Muñoz, A. I. (2009). Effect of thermal treatment and applied potential on the electrochemical behaviour of CoCrMo biomedical alloy. Electrochimica Acta, 54(6), 1798-1809. doi:10.1016/j.electacta.2008.10.018Valero Vidal, C., & Igual Muñoz, A. (2010). Study of the adsorption process of bovine serum albumin on passivated surfaces of CoCrMo biomedical alloy. Electrochimica Acta, 55(28), 8445-8452. doi:10.1016/j.electacta.2010.07.028Bettini, E., Eriksson, T., Boström, M., Leygraf, C., & Pan, J. (2011). Influence of metal carbides on dissolution behavior of biomedical CoCrMo alloy: SEM, TEM and AFM studies. Electrochimica Acta, 56(25), 9413-9419. doi:10.1016/j.electacta.2011.08.028Buttry, D. A., & Ward, M. D. (1992). Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chemical Reviews, 92(6), 1355-1379. doi:10.1021/cr00014a006Daujotis, V., Jasaitis, D., & Raudonis, R. (1997). The mechanism of electroreduction of silver cyanide complexes in aqueous electrolytes—I. Time-resolved EQCM study. Electrochimica Acta, 42(9), 1337-1344. doi:10.1016/s0013-4686(96)00310-6Sauerbrey, G. (1959). Verwendung von Schwingquarzen zur Wïżœgung dïżœnner Schichten und zur Mikrowïżœgung. Zeitschrift fïżœr Physik, 155(2), 206-222. doi:10.1007/bf01337937Galliano, F., Olsson, C.-O. A., & Landolt, D. (2003). Flow Cell for EQCM Adsorption Studies. Journal of The Electrochemical Society, 150(11), B504. doi:10.1149/1.1613293Olsson, C.-O. A., & Landolt, D. (2003). Anodisation of a Nb–Zr alloy. Electrochimica Acta, 48(27), 3999-4011. doi:10.1016/s0013-4686(03)00540-1VergĂ©, M.-G., Olsson, C.-O. A., & Landolt, D. (2004). Anodic oxide growth on tungsten studied by EQCM, EIS and AES. Corrosion Science, 46(10), 2583-2600. doi:10.1016/j.corsci.2004.02.005Olsson, C.-O. A., Vergé, M.-G., & Landolt, D. (2004). EQCM Study of Anodic Film Growth on Valve Metals. Journal of The Electrochemical Society, 151(12), B652. doi:10.1149/1.1819896Schmutz, P., & Landolt, D. (1999). Electrochemical quartz crystal microbalance study of the transient response of passive Fe25Cr alloy. Electrochimica Acta, 45(6), 899-911. doi:10.1016/s0013-4686(99)00293-5Schmutz, P., & Landolt, D. (1999). In-situ microgravimetric studies of passive alloys: potential sweep and potential step experiments with Fe–25Cr and Fe–17Cr–33Mo in acid and alkaline solution. Corrosion Science, 41(11), 2143-2163. doi:10.1016/s0010-938x(99)00038-4Hamm, D., Ogle, K., Olsson, C.-O. ., Weber, S., & Landolt, D. (2002). Passivation of Fe–Cr alloys studied with ICP-AES and EQCM. Corrosion Science, 44(7), 1443-1456. doi:10.1016/s0010-938x(01)00147-0Olsson, C.-O. ., & Landolt, D. (2003). Passive films on stainless steels—chemistry, structure and growth. Electrochimica Acta, 48(9), 1093-1104. doi:10.1016/s0013-4686(02)00841-1Olsson, C.-O. A., & Landolt, D. (2001). Film Growth during Anodic Polarization in the Passive Region on 304 Stainless Steels with Cr, Mo, or W Additions Studied with EQCM and XPS. Journal of The Electrochemical Society, 148(11), B438. doi:10.1149/1.1404969Olsson, C.-O. A., Hamm, D., & Landolt, D. (2000). Electrochemical Quartz Crystal Microbalance Studies of the Passive Behavior of Cr in a Sulfuric Acid Solution. Journal of The Electrochemical Society, 147(7), 2563. doi:10.1149/1.1393569Payet, V., Brunner, S., Galtayries, A., Frateur, I., & Marcus, P. (2008). Cleaning of albumin-contaminated Ti and Cr surfaces: an XPS and QCM study. Surface and Interface Analysis, 40(3-4), 215-219. doi:10.1002/sia.2655Herranen, M., & Carlsson, J.-O. (2001). An electrochemical quartz crystal microbalance and in situ SFM study of Ti in sulphuric acid. Corrosion Science, 43(2), 365-379. doi:10.1016/s0010-938x(00)00079-2Höök, F., Vörös, J., Rodahl, M., Kurrat, R., Böni, P., Ramsden, J. ., 
 Kasemo, B. (2002). A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation. Colloids and Surfaces B: Biointerfaces, 24(2), 155-170. doi:10.1016/s0927-7765(01)00236-3Frateur, I., Lecoeur, J., Zanna, S., Olsson, C.-O. A., Landolt, D., & Marcus, P. (2007). Adsorption of BSA on passivated chromium studied by a flow-cell EQCM and XPS. Electrochimica Acta, 52(27), 7660-7669. doi:10.1016/j.electacta.2006.12.060Ithurbide, A., Frateur, I., Galtayries, A., & Marcus, P. (2007). XPS and flow-cell EQCM study of albumin adsorption on passivated chromium surfaces: Influence of potential and pH. Electrochimica Acta, 53(3), 1336-1345. doi:10.1016/j.electacta.2007.04.109Muñoz A. Igual Mischler S. , Inter-laboratory study on electrochemical methods for the characterisation of CoCrMo biomedical alloys in simulated body fluids, European Federation of Corrosion by Maney Publishing on behalf of The Institute of Materials, Minerals & Mining, UK (2011).Bruckenstein, S., & Shay, M. (1985). Experimental aspects of use of the quartz crystal microbalance in solution. Electrochimica Acta, 30(10), 1295-1300. doi:10.1016/0013-4686(85)85005-2Kern, P., & Landolt, D. (2000). Design and Characterization of a Rotating Electrochemical Quartz-Crystal-Microbalance Electrode. Journal of The Electrochemical Society, 147(1), 318. doi:10.1149/1.1393193Kelly, J. J. (1998). Effect of Current Distribution on Quartz Crystal Microbalance Measurements. Journal of The Electrochemical Society, 145(2), 492. doi:10.1149/1.1838291Olsson, C.-O. A., & Landolt, D. (2004). Atmospheric oxidation of a Nb–Zr alloy studied with XPS. Corrosion Science, 46(1), 213-224. doi:10.1016/s0010-938x(03)00139-2Brox B. Olefjord I. , in Proceedings of Stainless Steel 1984, p. 134, The Institute of Metals, London (1985).Wegrelius L. Olefjord I. , in Proceedings of 12th International Corrosion Congress, 5B, p3887, NACE, Houston, TX (1993).Savitzky, A., & Golay, M. J. E. (1964). Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 36(8), 1627-1639. doi:10.1021/ac60214a047Ouerd, A., Alemany-Dumont, C., Normand, B., & Szunerits, S. (2008). Reactivity of CoCrMo alloy in physiological medium: Electrochemical characterization of the metal/protein interface. Electrochimica Acta, 53(13), 4461-4469. doi:10.1016/j.electacta.2008.01.025Tanuma, S., Powell, C. J., & Penn, D. R. (1994). Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50-2000 eV range. Surface and Interface Analysis, 21(3), 165-176. doi:10.1002/sia.740210302Tanuma, S., Powell, C. J., & Penn, D. R. (2003). Calculation of electron inelastic mean free paths (IMFPs) VII. Reliability of the TPP-2M IMFP predictive equation. Surface and Interface Analysis, 35(3), 268-275. doi:10.1002/sia.1526Kocijan, A., MiloĆĄev, I., & Pihlar, B. (2004). Cobalt-based alloys for orthopaedic applications studied by electrochemical and XPS analysis. Journal of Materials Science: Materials in Medicine, 15(6), 643-650. doi:10.1023/b:jmsm.0000030204.08616.3dHamm, D., Olsson, C.-O. A., & Landolt, D. (2002). Effect of chromium content and sweep rate on passive film growth on iron–chromium alloys studied by EQCM and XPS. Corrosion Science, 44(5), 1009-1025. doi:10.1016/s0010-938x(01)00126-3Schmuki, P. (1996). Transpassive Dissolution of Cr and Sputter-Deposited Cr Oxides Studied by In Situ X-Ray Near-Edge Spectroscopy. Journal of The Electrochemical Society, 143(12), 3997. doi:10.1149/1.1837327Valero Vidal, C., Olmo Juan, A., & Igual Muñoz, A. (2010). Adsorption of bovine serum albumin on CoCrMo surface: Effect of temperature and protein concentration. Colloids and Surfaces B: Biointerfaces, 80(1), 1-11. doi:10.1016/j.colsurfb.2010.05.00

    Future Needs for Tribo-Corrosion Research and Testing

    Get PDF
    Tribo-corrosion is an emerging interdisciplinary subject that spans from basic research on the behavior of surfaces in mechanical contact in chemically active surroundings to the test methods needed to quantify its effects, and from the selection of materials for bio-implants to the minimization of surface degradation and wastage in advanced energy conversion systems. Such a diverse field brings with it many challenges in understanding, testing, standardization, and application to engineering practice. This paper summarizes a panel discussion and participant survey held at the Third International Symposium on Tribo-Corrosion in Atlanta, Georgia, USA, in April 2012. It reflects a sense of agreement on many of the key scientific challenges in the field and the fact that tribo-corrosion is still in its infancy in terms of broad industry recognition, education, and the ability of those who conduct tribo-corrosion research to connect their laboratory results and theories to applications. Some sub-fields, notably the bio-tribo-corrosion of medical implants, have witnessed active international research efforts, but the engineering community in many other important areas of technology may not yet be aware of the field despite numerous tribo-corrosion problems that may exist within their purview

    Third body effects on friction and wear during the fretting of steel contacts

    No full text
    Frettingwear proceeds through particle detachment from the contacting surfaces which, while trapped in the contact zone, can affect the frictional and wear response. Ball-on-flat fretting experiments were carried out between steel specimens under gross slip regime. A transition in the coefficient of friction was linked to a critical contact pressure. The microstructure and chemical composition of the thirdbody evolve with the applied pressure. The evolution of the friction coefficient is strongly dependent on the thirdbody properties. The wear is controlled by the applied load and thus the real contact area within the wear track

    A lubricated tribocorrosion model incorporating surface roughness

    No full text
    This study presents an improvement of an existing tribocorrosion model developed for passive CoCrMo alloys. This model is based on an empirical formalism established by Duncan Dowson in his pioneering works on the relation between wear and elasto-hydrodynamic lubrication. The improvement consists in introducing surface topography features allowing for a mechanistic relation between lubrication and wear. The effective normal force accounting for the plastic deformation of passive metals during lubricated tribocorrosion was described through the real contact area, which in turn was related to the worn surface topography (roughness) and the elasto-hydrodynamic film thickness. The modified model was applied to results from dedicated tribocorrosion experiments obtained by varying the lubricant viscosity and the contacting surface roughness. Good correlations were found between the mechanical and chemical wear rates and corresponding variables, which validated the model. Further development of the model should include boundary film effects, third bodies build-up and time dependent evolution of the worn surface

    Assessment of a recent tribocorrosion model for wear of metal-on-metal hip joints: Comparison between model predictions and simulator results

    No full text
    A composite running-in wear model for metal-on-metal artificial hip joints, which combines tribo-corrosion and lubrication aspects, was published recently. In order to check the quality of the model prediction, wear rates from nineteen well-controlled simulator wear studies were summarized and compared to the model predicted values. The results showed that the simulator wear results correlate well with the model predicted values. By estimating the maximum wear rate, the model can be used clinically to mitigate the failure risk of metal-on-metal hip joints. Furthermore, this study demonstrates the roles of the involved crucial parameters, giving tutorial suggestions of the input parameters and output values for the wear prediction of metal-on-metal artificial hip joints. (C) 2016 Elsevier B.V. All rights reserved

    Modeling tribocorrosion of passive metals - A review

    No full text
    Tribocorrosion is a material degradation phenomenon resulting from interactive effects between wear and corrosion. It is commonly found in engineering applications (e.g. biomedical implants and marine equipment) which involve relative motion of contacting metals in a corrosive environment. In this study, models describing tribocorrosion of passive metals in sliding contacts were reviewed. Different categories of models (two-body or three-body contact models, lubricated tribocorrosion model, empirical models, multi-degradation models) were found in the literature. Through the identification of relevant chemo-mechanical degradation mechanisms, robust analytical expressions accurately predicting the overall material loss in tribocorrosion have been developed. Numerical methods have been used to describe time dependent transitions in tribocorrosion. Possibilities and limits of the proposed models in the literature as well as future trends are discussed in this review

    In-vivo condition monitoring of metallic implants by electrochemical techniques

    No full text
    The invention relates to a replacement metallic prosthesis to be implanted which contains means monitor its condition during use in order to allow an early detection of failure or insufficient functionality, wherein said means comprise implanted sensors and electronics (3) and a remote device (9), to measure the implant's function and degradation during its life span, wherein said sensors are electro not chemical sensors with electrodes (1). The prosthesis according to the invention may also be used to promote bone growth. The invention also relates to a method using the device of the invention

    Wear of CoCrMo alloys used in metal-on-metal hip joints: A tribocorrosion appraisal

    Get PDF
    A good biocompatibility, excellent mechanical properties and high corrosion resistance characterize CoCrMo alloys. Therefore they are widely used for artificial joints in biomedical implants. However, the degradation of the implants during service life leads to the release into the body of toxic ions and wear particles. This continuous degradation is of concern for long-term stability of the implants. Published literature has highlighted the relevance of lubrication as well as metallurgical and contact mechanical factors on the degradation of CoCrMo implant alloys. Recent experimental investigations have proposed tribocorrosion, i.e., the interplay of mechanical wear and corrosion by the body fluids, as one of the crucial degradation mechanism of implants. Tribocorrosion is sub-discipline of tribology and corrosion that recently made significant progresses in mechanistic understanding and modelling. The present work aims at evaluating published results on the degradation of CoCrMo alloys using existing tribocorrosion concepts. Results show that wear accelerated corrosion due to mechanical removal of the passive film during sliding is a major contribution to the overall degradation. Further, a transition from low (10(-6) N/mm(3) m) to high (10(-4) N/mm(3) m) wear coefficients was found at a threshold electrode potential close to 0.2 V-SHE These findings clearly show that electrochemical phenomena play a key role on the tribological behaviour of biomedical CoCrMo alloy implants.A. Igual Munoz expresses her gratitude to the Ministerio de Ciencia e Innovacion of the Spanish government for the financial support under the project MAT2011-22481.Mischler, S.; Igual Muñoz, AN. (2013). Wear of CoCrMo alloys used in metal-on-metal hip joints: A tribocorrosion appraisal. Wear. 297(1-2):1081-1094. https://doi.org/10.1016/j.wear.2012.11.061S108110942971-

    An Overview of Serum Albumin Interactions with Biomedical Alloys

    No full text
    Understanding the interactions between biomedical alloys and body fluids is of importance for the successful and safe performance of implanted devices. Albumin, as the first protein that comes in contact with an implant surface, can determine the biocompatibility of biomedical alloys. The interaction of albumin with biomedical alloys is a complex process influenced by numerous factors. This literature overview aims at presenting the current understanding of the mechanisms of serum albumin (both Bovine Serum Albumin, BSA, and Human Serum Albumin, HSA) interactions with biomedical alloys, considering only those research works that present a mechanistic description of the involved phenomena. Widely used biomedical alloys, such as 316L steel, CoCrMo and Titanium alloys are specifically addressed in this overview. Considering the literature analysis, four albumin-related phenomena can be distinguished: adsorption, reduction, precipitation, and protein-metal binding. The experimental techniques used to understand and quantify those phenomena are described together with the studied parameters influencing them. The crucial effect of the electrochemical potential on those phenomena is highlighted. The effect of the albumin-related phenomena on corrosion behavior of biomedical materials also is discussed
    corecore