563 research outputs found

    Contrast echocardiography for cardiac quantifications

    Get PDF
    The indicator-dilution-theory for cardiac quantifications has always been limited in practice by the invasiveness of the available techniques. However, the recent introduction of stable ultrasound contrast agents opens new possibilities for indicator dilution measurements. This study describes a new and successful approach to overcome this invasiveness issue. We show a novel approach for minimally invasive quantification of several cardiac parameters based on the dilution of ultrasound contrast agents. A single peripheral injection of an ultrasound contrast agent bolus can result in the simultaneous assessment of cardiac output, pulmonary blood volume, and left and right ventricular ejection fraction. The bolus passage in different sites of the central circulation is detected by an ultrasound transducer. The detected acoustic (or video) intensities are processed and several indicator dilution curves are measured simultaneously. To this end, we exploit that for low concentrations the relation between contrast concentration and acoustic backscatter is approximately linear. The Local Density Random Walk Model is used to fit and interpret the indicator dilution curves for cardiac output, pulmonary blood volume, and ejection fraction measurements. Two fitting algorithms based either on a multiple linear regression in the logarithmic domain or on the solution of the moment equations are developed. The indicator dilution system can be also interpreted as a linear system and, therefore, characterized by an impulse response function. An adaptive Wiener deconvolution filter is implemented for robust dilution system identification. For ejection fraction measurements, the atrial and ventricular indicator dilution curves are measured and processed by the deconvolution filter, resulting in the estimate of the left ventricle dilution-system impulse response. This curve can be fitted and interpreted by a mono-compartment exponential model for the ejection fraction assessment. The proposed deconvolution filter is also used for the identification of the dilution system between right ventricle and left atrium. The Local Density Random Walk Model fit of the estimated impulse response allows the pulmonary blood volume assessment. Both cardiac output and pulmonary blood volume measurements are validated in vitro with accurate results (correlation coefficients larger than 0.99). The Pulmonary blood volume measurement feasibility is also tested in humans with promising results. The ejection fraction measurement is validated in-vivo. The impulse response approach allows accurate left ventricle ejection fraction estimates. Comparison with echocardiographic bi-plane measurements shows a correlation coefficient equal to 0.93. A dedicated image segmentation algorithm for videodensitometry has also been developed for automating the determination of regions of interest. The resulting algorithm has been integrated with the indicator dilution analysis system. The automatic determination of the measurement region results in improved dilution-curve signal-to-noise ratios. In conclusion, this study proves that quantification of cardiac output, pulmonary blood volume, and left and right ventricular ejection fraction by dilution of ultrasound contrast agents is feasible and accurate. Moreover, the proposed methods are applicable in different contexts (e.g., magnetic resonance imaging) and for different types of measurements, leading to a broad range of applications

    Human intelligence in biomedical diagnostics

    Get PDF

    Electromyographic assessment of muscle fatigue during isometric vibration training at varying frequencies

    Get PDF
    Resistance exercise is essential to improve or maintain muscle performance. Vibration training has been suggested as an alternative option for muscle conditioning, aiming especially at improving muscle strength and power. Several studies link the effects of vibration training to enhanced neuromuscular stimulation, measured by electromyography (EMG) and typically ascribed to involuntary reflex mechanisms. However, the underlying mechanisms are still unclear, limiting the use of vibration training. This paper proposes additional methods to analyze the mechanisms involved in vibration training. A dedicated measurement setup was realized to relate vibration parameters to muscle fatigue in the biceps brachii. Fatigue is estimated by EMG mean frequency and conduction velocity assessments as well as by maximum voluntary contraction (MVC) force measurements. A modified maximum likelihood algorithm is proposed for the conduction velocity estimation based on high-density EMG recording. Five volunteers performed four isometric contractions of 50 s at 80% MVC with no vibration (control) and with superimposed vibration at 20, 30, and 40 Hz. Fatigue was estimated from the decay of force, EMG mean frequency, and EMG conduction velocity. 30-Hz vibrations represented the most fatiguing stimulus. Our preliminary results also show a better correlation between force and conduction velocity decay than between force and mean frequency decay, indicating the former as a better EMG indicator of fatigue. The proposed methods provide important advancements for the analysis of vibration exercise and guidance towards the definition of optimal training protocols

    Videodensitometric methods for cardiac output measurements

    Get PDF
    Cardiac output is often measured by indicator dilution techniques, usually based on dye or cold saline injections. Developments of more stable ultrasound contrast agents (UCA) are leading to new noninvasive indicator dilution methods. However, several problems concerning the interpretation of dilution curves as detected by ultrasound transducers have arisen. This paper presents a method for blood flow measurements based on UCA dilution. Dilution curves are determined by real-time densitometric analysis of the video output of an ultrasound scanner and are automatically fitted by the Local Density Random Walk model. A new fitting algorithm based on multiple linear regression is developed. Calibration, that is, the relation between videodensity and UCA concentration, is modelled by in vitro experimentation. The flow measurement system is validated by in vitro perfusion of SonoVue contrast agent. The results show an accurate dilution curve fit and flow estimation with determination coefficient larger than 0.95 and 0.99, respectively

    Cardiac Image Segmentation for Contrast Agent Videodensitometry

    Full text link

    Noninvasive estimation of the electrohysterographic action-potential conduction velocity

    Get PDF
    Electrophysiological monitoring of the fetal-heart and the uterine-muscle activity, referred to as an electrohysterogram, is essential to permit timely treatment during pregnancy. While remarkable progress is reported for fetal-cardiac-activity monitoring, the electrohysterographic (EHG) measurement and interpretation remain challenging. In particular, little attention has been paid to the analysis of the EHG propagation, whose characteristics might be predictive of the preterm delivery. Therefore, this paper focuses, for the first time, on the noninvasive estimation of the conduction velocity of the EHG-action potentials. To this end, multichannel EHG recording and surface high-density electrodes are used. A maximum-likelihood method is employed for analyzing the EHG-action-potential propagation in two dimensions. The use of different weighting strategies of the derived cost function is introduced to deal with the poor signal similarity between different channels. The presented methods were evaluated by specific simulations proving the best weighting strategy to lead to an accuracy improvement of 56.7%. EHG measurements on ten women with uterine contractions confirmed the feasibility of the method by leading to conduction velocity values within the expected physiological range

    Observed cumulative time delay between second harmonic and fundamental component of pressure wave fields propagating through ultrasound contrast agentss

    Get PDF
    Several studies on the propagation velocity of pressure wave fields through ultrasound contrast agents (UCAs) have been reported in the literature. However, the variation of propagation velocity between the fundamental and the second harmonic component generated during the propagation of ultrasound through UCAs has, to our knowledge, not been studied yet. To this scope, dedicated transmission and backscattering measurements of pressure wave fields propagating through SonoVue and Definity contrast agents, are analyzed. Results show the occurrence of a cumulative delay between the time signals related to the second harmonic and fundamental component, suggesting a smaller propagation velocity for the second harmonic as compared to the fundamental component. Moreover, this time delay increases with increasing UCA concentration and propagation path length of ultrasound trough microbubbles, depends on mechanical index and frequency, and, most importantly, is not observed in the absence of UCAs. These results may be relevant to contrast-enhanced ultrasonography, opening up to new possibilities to increase contrast-to-tissue ratios and to quantify UCA concentration

    Identification of ultrasound-contrast-agent dilution systems for ejection fraction measurements

    Get PDF
    Left ventricular ejection fraction is an important cardiac-efficiency measure. Standard estimations are based on geometric analysis and modeling; they require time and experienced cardiologists. Alternative methods make use of indicator dilutions, but they are invasive due to the need for catheterization. This study presents a new minimally invasive indicator dilution technique for ejection fraction quantification. It is based on a peripheral injection of an ultrasound contrast agent bolus. Left atrium and left ventricle acoustic intensities are recorded versus time by transthoracic echocardiography. The measured curves are corrected for attenuation distortion and processed by an adaptive Wiener deconvolution algorithm for the estimation of the left ventricle impulse response, which is interpolated by a monocompartment exponential model for the ejection fraction assessment. This technique measures forward ejection fraction, which excludes regurgitant volumes. The feasibility of the method was tested on a group of 20 patients with left ventricular ejection fractions going from 10% to 70%. The results are promising and show a 0.93 correlation coefficient with echographic bi-plane ejection fraction measurements. A more extensive validation as well as an investigation on the method applicability for valve insufficiency and right ventricular ejection fraction quantification will be an object of future study
    • …
    corecore