
 

Contrast echocardiography for cardiac quantifications

Citation for published version (APA):
Mischi, M. (2004). Contrast echocardiography for cardiac quantifications. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR579395

DOI:
10.6100/IR579395

Document status and date:
Published: 01/01/2004

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR579395
https://doi.org/10.6100/IR579395
https://research.tue.nl/en/publications/63cb57f8-67f0-497e-b7e5-4dd86265d875


Contrast Echocardiography for Cardiac
Quantifications

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische
Universiteit Eindhoven, op gezag van de Rector Magnificus,

prof.dr. R.A. van Santen, voor een commissie aangewezen door
het College voor Promoties in het openbaar te verdedigen op

maandag 4 oktober 2004 om 16.00 uur

door

Massimo Mischi

geboren te Rome, Italië
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Summary

The indicator-dilution-theory for cardiac quantifications has always been limited in
practice by the invasiveness of the available techniques. However, the recent intro-
duction of stable ultrasound contrast agents opens new possibilities for indicator dilu-
tion measurements. This study describes a new and successful approach to overcome
this invasiveness issue.

We show a novel approach for minimally invasive quantification of several car-
diac parameters based on the dilution of ultrasound contrast agents. A single periph-
eral injection of an ultrasound contrast agent bolus can result in the simultaneous
assessment of cardiac output, pulmonary blood volume, and left and right ventricu-
lar ejection fraction. The bolus passage in different sites of the central circulation is
detected by an ultrasound transducer. The detected acoustic (or video) intensities are
processed and several indicator dilution curves are measured simultaneously. To this
end, we exploit that for low concentrations the relation between contrast concentra-
tion and acoustic backscatter is approximately linear.

The Local Density Random Walk Model is used to fit and interpret the indicator
dilution curves for cardiac output, pulmonary blood volume, and ejection fraction
measurements. Two fitting algorithms based either on a multiple linear regression in
the logarithmic domain or on the solution of the moment equations are developed.

The indicator dilution system can be also interpreted as a linear system and, there-
fore, characterized by an impulse response function. An adaptive Wiener deconvo-
lution filter is implemented for robust dilution system identification. For ejection
fraction measurements, the atrial and ventricular indicator dilution curves are mea-
sured and processed by the deconvolution filter, resulting in the estimate of the left-
ventricle dilution-system impulse response. This curve can be fitted and interpreted
by a mono-compartment exponential model for the ejection fraction assessment.

The proposed deconvolution filter is also used for the identification of the dilution
system between right ventricle and left atrium. The Local Density Random Walk
Model fit of the estimated impulse response allows the pulmonary blood volume
assessment.

Both cardiac output and pulmonary blood volume measurements are validated in-
vitro with accurate results (correlation coefficients larger than 0.99). The Pulmonary
blood volume measurement feasibility is also tested in humans with promising re-
sults. The ejection fraction measurement is validated in-vivo. The impulse response
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approach allows accurate left ventricle ejection fraction estimates. Comparison with
echocardiographic bi-plane measurements shows a correlation coefficient equal to
0.93.

A dedicated image segmentation algorithm for videodensitometry has also been
developed for automating the determination of regions of interest. The resulting algo-
rithm has been integrated with the indicator dilution analysis system. The automatic
determination of the measurement region results in improved dilution-curve signal-
to-noise ratios.

In conclusion, this study proves that quantification of cardiac output, pulmonary
blood volume, and left and right ventricular ejection fraction by dilution of ultra-
sound contrast agents is feasible and accurate. Moreover, the proposed methods are
applicable in different contexts (e.g., magnetic resonance imaging) and for different
types of measurements, leading to a broad range of applications.



Samenvatting

Het kwantificeren van hartfunctie parameters met behulp van de indicator-dilutie-
theorie werd altijd beperkt doordat de beschikbare technieken invasief van aard waren.
De recent op de markt gekomen stabiele contrastvloeistoffen maken het echter mo-
gelijk niet-invasieve metingen met ultrageluid te doen met behulp van de indicator-
dilutie-theorie. Dit onderzoek beschrijft een nieuwe en succesvol gebleken aanpak
om het probleem van invasiviteit te overwinnen.

Er wordt een nieuwe aanpak beschreven voor het kwantificeren van een aantal
hartfunctie parameters, gebaseerd op de verdunning van een toegediende ultrageluid
contrastvloeistof waarbij minimale invasiviteit gewaarborgd wordt. Met één enkele
perifere injectie van een ultrageluid contrastvloeistof bolus kan gelijktijdig de car-
diac output, het pulmonair bloedvolume en de ejectie fractie van het linker en rechter
ventrikel gemeten worden. Het passeren van de contrastvloeistof op verschillende
plaatsen in de centrale circulatie wordt gedetecteerd met een ultrageluid-transducer.
De gedetecteerde geluids- en video-intensiteiten worden zo verwerkt, dat verschei-
dene indicator-dilutie-curven gelijktijdig kunnen worden gemeten. Er wordt hier-
bij gebruik gemaakt van het feit dat bij lage concentraties van de contrastvloeistof
er –bij benadering– een lineaire relatie bestaat tussen de concentratie van de con-
trastvloeistof en de akoestische reflectie.

Het Local Density Random Walk Model wordt gebruikt om de indicator-dilutie-
curven te fitten en te interpreteren bij het meten van de cardiac output, het pulmonair
bloedvolume en de ejectie fractie. Voor het gebruik van het model zijn twee algo-
ritmes ontwikkeld, een gebaseerd op meervoudige lineaire regressie met een logarit-
mische schaal, de ander op het oplossen van de momenten vergelijkingen.

De indicator-dilutie overdracht kan geı̈nterpreteerd worden als een lineair sys-
teem en kan daarom gekarakteriseerd worden met een impulsresponsie. Om robuuste
identificatie van het dilutie-systeem te verkrijgen is een instelbaar Wiener deconvolu-
tie filter geı̈mplementeerd. Voor het bepalen van de ejectie fractie worden de atriale
en ventriculaire indicator-dilutie-curven gemeten en gedeconvolueerd. Dit resulteert
in een schatting van de impulsresponsie van het dilutie-systeem van het linker ven-
trikel. De geschatte impulsresponsie wordt vervolgens gefit en geı̈nterpreteerd door
middel van een exponentieel mono-compartiment model resulterend in een schatting
van de ejectie fractie.
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Het deconvolutie filter wordt tevens gebruikt ter identificatie van de overdracht
tussen het rechter ventrikel en linker atrium. De local density random walk model
fit van de geschatte impulsresponsie levert een schatting op van het pulmonair bloed-
volume.

Zowel de meting van de cardiac output als die van het pulmonair bloedvolume
zijn in vitro gevalideerd waaruit bleek dat de resultaten betrouwbaar zijn (correlatie
coëfficiënten groter dan 0,99). De mogelijkheid om het pulmonair bloedvolume in
vivo te meten is ook onderzocht en leverde veelbelovende resultaten op. De metingen
van de ejectie fractie zijn in vivo gevalideerd. De bepaling van de ejectie fractie met
behulp van de impulsresponsie methode levert een nauwkeurige schatting op van de
ejectie fractie van het linker ventrikel. De vergelijking van de resultaten met die van
de echocardiografische bi-plane metingen geeft een correlatie coëfficiënt van 0,93.

Voor de automatische bepaling van de region of interest is een speciaal beeld seg-
mentatie algoritme voor videodensitometrie ontwikkeld. Het algoritme is geı̈ntegreerd
met het indicator-dilutie analyse systeem. De automatische bepaling van de region of
interest resulteert in een verbeterde signaal-ruis verhouding van de dilutie-curve.

De conclusie is dat dit onderzoek heeft aangetoond dat nauwkeurige kwantificatie
van de cardiac output, het pulmonair bloedvolume en de ejectie fractie van het linker
en rechter ventrikel door middel van de dilutie van een ultrageluid contrastvloeistof
mogelijk is. Bovendien zijn de voorgestelde methoden toepasbaar in verschillende
contexten (b.v. magnetic resonance imaging) en voor verschillende typen metingen,
wat kan leiden tot een breed gebied van toepassingen.
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Chapter 1

Introduction

Quicquid conaris, quo pervenias cogites (P. Sirius).

Despite the development of advanced diagnostic techniques, the assessment of
clinical parameters such as Cardiac Output (CO), Ejection Fraction (EF), and Pul-
monary Blood Volume (PBV) remains a challenge. An accurate measurement of
CO and PBV requires the employment of very invasive indicator dilution techniques
(dye- or thermo-dilution), which require catheterization. The Left Ventricle (LV) EF
can be estimated by use of 2-D or 3-D image segmentation algorithms combined
with geometrical modelling, however, the assessment of the Right Ventricle (RV) EF
is complicated due to its complex geometry. An extended overview of the most com-
mon techniques that are available for quantification of CO, EF, and PBV is presented
in chapter 2.

This thesis aims to prove that the combined use of Ultrasound Contrast Agents
(UCAs) and indicator dilution principles can result in a method that allows the simul-
taneous measurement of CO, EF (RV and LV), and PBV. UCAs are micro-bubbles
(diameter from 1µm to 10µm) of an inert gas encapsuled in a bio-compatible shell
that are easily detectable by ultrasound investigation (echography). An overview of
the principles of echography, as well as a characterization of UCA and an introduc-
tion to the echographic modes that are specifically designed for UCA detection is
provided in chapter 3.

Some preliminary results are reported in literature on the measurement in-vitro
and in animals of flow and CO based on UCA dilution [1–7], as well as on the mea-
surement of EF in dogs using a ventricular UCA bolus injection [8]. However, in this
thesis we present a new and minimally invasive approach that integrates several car-
diac measurements together. Based on the shell-encapsuled UCA characterization,
the relationship between UCA concentration and acoustic (and video) intensity is es-
tablished for small driving pressure. Exploiting the latest contrast detection modes,
an extremely low concentration range is found in which the relation between con-
trast concentration and measured intensity is well approximated by a linear function.
Several procedures were used for the experimental measurements of such calibration
curves. They are presented in chapter 4.
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Chapter 4 also contains a description of the models that are commonly adopted
for indicator dilution applications. They are adopted to overcome the low Signal-to-
Noise Ratio (SNR) and contrast recirculation issues, and to provide with an inter-
pretation of the IDC for the assessment of the fluid-dynamic parameters of interest.
In particular, two models are selected for the UCA dilution curve interpolation and
interpretation. They are the Local Density Random Walk (LDRW) and the First Pas-
sage Time (FPT) models. These models (especially the LDRWmodel), as reported in
literature, show the best interpolation of the Indicator Dilution Curve (IDC) [9–14].
Moreover, they are related to the physics of the tracer-dispersion process [15, 16]. In
chapter 4, as well as in Appendix B and C, also the LDRWmodel derivation from the
statistical physics is shown. As the presented LDRW model derivations are a struc-
tured rearrangement of information already available in literature, a new procedure is
proposed for the derivation of the FPT model, which is related to the LDRW model.
This thesis shows the very first application of the LDRW and FPT models to UCA
dilution methods.

Chapter 5 proposes an UCA IDC method for CO, PBV, and EF measurements.
A small UCA bolus is injected in a peripheral vein and detected by an ultrasound
scanner in the central circulation. The analysis of the acoustic (or video) intensity of
the B-mode output of an ultrasound scanner allows - after calibration - the measure-
ment of several UCA dilution curves. The cardiac parameters of interest are derived
from the dilution curve modelling and interpolation. Several cardiac views permit
the measurement of different IDCs from different sites. If a trans-esophageal probe
is used, the CO can be assessed by the RV IDC analysis (before the bubble loss in
the lungs). CO measurements require the use of a trans-esophageal probe because of
calibration issues. Placing the probe almost in touch with the posterior cardiac wall
permits a reliable establishment of the relation between injected dose and measured
signal, which does not depend on the specific characteristics of the patient (gender,
fat tissue, rib position, etc.). The LDRW model is fitted to the measured IDC by a
dedicated fitting algorithm. The CO is directly derived from the model parameters.

Two alternative fitting algorithms are proposed. They are based on either a mul-
tiple linear regression technique in the logarithmic domain or the solution of the
LDRW model (or FPT model) moment equations. Both techniques are discussed
in chapter 5, as well as the principles of the multi-linear regression are shown in Ap-
pendix A. The method of moments requires the analytical solution of the integral and
the first two statistical moments of the model. An analytical formula for the calcu-
lation of the FPT model moments is reported in literature. However, the same is not
available for the LDRW model, so that an analytical calculation of the first two mo-
ments is proposed in chapter 5 as well as an analytical solution of the LDRW model
time integral is proposed1 in Appendix D.

1The LDRW model integral was solved with the fundamental support of prof.dr. Avantaggiati.
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The CO can be multiplied by the contrast Mean Transit Time (MTT) between any
couple of detection sites in the central circulation, resulting in a novel dilution tech-
nique for blood volume estimation. The MTT is directly derived from the parameters
of the fitted models. For PBV assessments, two IDCs are measured in the RV and the
Left Atrium (LA) and the contrast MTT between RV and LA is estimated from the
IDC LDRW model fits. Measurements in the RV-outflow tract and in the Pulmonary
Artery (PA) are also possible. MTT estimations do not require the employment of
a trans-esophageal probe. When a trans-thoracic probe is used, the CO cannot be
measured by contrast echocardiography. However, several options are available for
a non-invasive assessment of the CO. The difference between MTT and Mean Resi-
dence Time (MRT) of the contrast between two detection sites and its relation with
volume measurements is also discussed. The use of the MTT is preferred.

CO measurements were validated in-vitro. Two different setups, involving either
a centrifugal pump or an artificial ventricle, were used. The correlation coefficient
between real and measured flows in a range from 0.5 to 5 L/min is larger than 0.99.
Also the volume measurement was validated in-vitro by a specific set-up. Four dif-
ferent volumes from 310ml to 1080ml were measured with flow ranging from 1 to
5 L/min. The correlation coefficient is 0.99 and the standard deviation smaller than
2.7%. PBV measurements were also tested in patients with promising results.

In conclusion of chapter 5, a new technique for the measurement of EF based on
the LDRWmodel fit of LV IDCs is presented. However, the measurements in patients
are not accurate. A better solution for EF measurements is proposed in chapter 6.

In general, for a correct EF estimation based on contrast dilution the bolus must
be injected into the LV during diastole. Therefore, catheterization is needed and the
clinical application of the method is limited by its high invasiveness. A solution
for the invasiveness issue is provided by the innovative approach that is proposed in
chapter 6, which makes use of an intravenous peripheral injection as used in chapter 5
for CO and PBV measurements. The RV or LV EF is measured by estimation and
model fitting of the RV or LV impulse response. In fact, the ventricular dilution sys-
tem can be approximated by a linear system and its impulse response estimated by a
deconvolution technique once the system input and output signals (LA and LV IDC)
are known. The estimated impulse response satisfies the hypothesis for a correct EF
measurement. The atrial and ventricular IDCs are measured by a trans-thoracic ultra-
sound transducer and used for the ventricular system identification (impulse response
estimation) after compensation for the attenuation effect on the LA IDC. An adaptive
Wiener deconvolution scheme is implemented for the impulse response estimation.
The choice for a least square approach is due to the low SNR that is shown by UCA
IDCs. Eventually, the EF, which in the indicator dilution context is better referred
to as Forward Ejection Fraction (FEF), is estimated by the mono-compartment expo-
nential fit of the impulse response.
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The EF measurement was validated in-vivo. A group of twenty patients with EF
ranging from 10% to 70% and negligible mitral insufficiency was selected. EF dilu-
tion estimates were compared to EF measurements by echographic bi-plane method
after UCA opacification. The correlation coefficient is 0.93. The Bland-Altman sta-
tistical analysis shows an average and a standard deviation equal to 1.6% and 8%
respectively [17].

In chapter 6 the same system identification technique is also applied to blood
volume measurements. In fact, an impulse response can be estimated between any
couple of measurement sites in the central circulation and the MTT of the impulse
response, derived from the LDRW fit, multiplied by the CO for the volume assess-
ment. In particular, the PBV is measured by RV and LA IDC measurements. The
validation results are very close to those measured by direct LDRW fit of two IDCs
as shown in chapter 5.

Chapter 7 presents a dedicated segmentation technique for cardiac contrast quan-
tification. It performs an automatic detection of multiple Regions Of Interest (ROI)
for the measurement of multiple video-intensity curves (videodensitometry). The
ROI is defined in order to maximize the measurement area and exclude the interfer-
ence due to moving tissue. It results in improved fits of the measured IDCs with
respect to manual ROI delineation.

A consistent part of this thesis has been published in several journal articles and
conference proceedings. With reference to the section List of publications, part of the
introductory sections in chapter 2 and 3 can be found in [PR-1]. In [PR-1], as well as
in [JP-4], also some of the calibration issues discussed in chapter 4 are reported. The
CO measurement and the multiple linear regression technique in chapter 5 are re-
ported in [JP-4], as well as part of the blood volume measurements in the same chap-
ter are reported in [JP-3], [IC-7], and [IC-8]. The method of moments in chapter 5
is described in [IC-3]. The system identification approach in chapter 6 is reported
in [JP-1], [IC-1], and [IC-2]. Finally, the segmentation algorithm that is proposed in
chapter 7 is presented in [JP-2].
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Chapter 2

Clinical parameters of interest and their
measurement

Nunquam invenietur, si contenti fuerimus inventis (Seneca).

Figure 2.1: Anatomy of the heart.

The object of this study is the development of non-invasive tools for the measure-
ment of cardiac and cardiovascular parameters. The heart is basically a pump, which
makes the blood flow through the circulatory system and carry oxygen to the cells of
the human body. It is necessary for the metabolism of the cells and, therefore, for life
itself.
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Figure 2.2: Scheme of the heart and the circulatory system. It is shown the
blood direction through the atria and the ventricles as well as a
schematic representation of both the circulation systems, i.e., the
Systemic Circulation (SC), which brings oxygen to all the body,
and the pulmonary circulation, which passes trough the lungs,
where the gas exchange takes place (oxygen in, and anhydride
carbonic out). The Mitral Valve (MV), the Tricuspid Valve (TV),
the Pulmonary Valve (PV), and the Aortic Valve (AV) are shown
too.

The heart consists of four chambers (see Fig. (2.1) and Fig. (2.2)): the Left and
the Right Atrium (LA and RA in Fig. (2.2)) are filled by blood coming respectively
from the pulmonary veins and the vena cava (superior and inferior vena cava), while
the other two chambers, the Left and the Right Ventricle (LV and RV in Fig. (2.2)),
pump blood into the aorta and the pulmonary artery respectively. The left atrium and
ventricle are connected by the Mitral Valve (MV in Fig. (2.2)), while the right atrium
and ventricle are connected by the Tricuspid Valve (TV in Fig. (2.2)).

The ventricular cycle is divided in twomain phases: diastole and systole. Diastole
is the expansion (volume increase and blood filling) of the ventricle while systole
is the contraction (volume reduction and blood ejection) of the ventricle. During
diastole the mitral (or tricuspid) valve is open and blood flows from the atrium into
the ventricle. During systole the valve is closed, and blood is pushed through the
Aortic Valve (AV) or Pulmonary Valve (PV) into the aorta (systemic circulation) or
the pulmonary artery (pulmonary circulation) respectively. A good closure of the
valves prevents from blood leakage (regurgitation due to valve insufficiency) and
backward flow.
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The overall efficiency of the heart and the circulatory system is usually character-
ized by few important parameters. They are the Pulse Rate (PR, number of cardiac
cycles per minute), the Cardiac Output (CO, blood flow through the aorta out-tract),
and the Ejection Fraction (EF, percent volume variation of the ventricles). As the
PR is accurately measured by pressure variations or electrical cardiac activity, more
complicated is an accurate assessment of CO and EF.

The objective of this study is the development of new minimally-invasive indi-
cator dilution methods for the measurement of CO and EF, which could represent
a valid alternative to the invasive indicator dilution techniques and time-consuming
geometric imaging techniques that are currently used in the clinical practice. The
proposed methods are based on the dilution of specific contrast agents for echocar-
diography. In addition, based on the same indicator dilution principles, an accurate
method for the measurement of Pulmonary Blood Volume (PBV) is proposed. The
pulmonary blood volume, which is the blood volume in the pulmonary circulation
(see Fig. (2.2)), is currently measured by very invasive techniques. The proposed
technique is minimally invasive, so that the measurement of PBV could become a
routine practice in outpatients. As a result, also the PBV could be included in the set
of important parameters for the assessment of the circulatory system condition.

Since the objective of this study is the assessment of CO, EF, and PBV, the rest of
the chapter focuses on the description of the available techniques for the measurement
of these parameters. In particular, section 2.1, section 2.2, and section 2.3 describe
the measurement techniques for CO, EF, and PBV respectively.

2.1 Cardiac output

Several different techniques are clinically used for Cardiac Output (CO) measure-
ments. They are based on different principles with different reproducibility and ac-
curacy [18]. Before considering the main measurement techniques, the CO must be
clearly defined.

The blood that is ejected into the aorta carries oxygen to all the cells of the human
body (Systemic Circulation, see Fig. (2.2)). Hence, the blood flow that is pumped by
the left ventricle into the aorta is the first index of the circulation efficiency. In gen-
eral, the CO is defined as the volume of blood that is ejected by the left ventricle
into the aorta and is expressed in liters per minute. However, the blood flow that
is ejected into the aorta is equal to the flow that passes through all the four cham-
bers. This makes the CO measurement simpler, since it can be performed in different
locations1.

Due to the cyclic contraction-expansion of the ventricles, the CO, as well as the
blood pressure, is a periodic function of time. The first harmonic of these functions is

1If a haemorrhage is not in progress.
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the Pulse Rate (PR), which represents the number of ventricular systoles (or diastoles)
per minute. Despite the fact that the CO is a periodic function, it is often represented
by a single value, which is a measure of the average flow. The CO is related to
the ventricular volume variations during a cardiac cycle. If Ved is the end diastolic
volume (maximum volume) and Ves is the end systolic volume (minimum volume),
then the Stroke Volume (SV), which is the volume of blood ejected from the ventricle
to the artery in one cardiac cycle, equals the difference Ved −Ves . Therefore, the CO
can be defined as given in Eq. (2.1)2.

CO= SV ·PR (2.1)

The CO for an average size adult (70 kg) at rest is about 5L/min. During severe
exercise it can increase to over 30L/min. Miguel Indurain (who won the Tour de
France in five successive years) had a resting PR of 28 beats per minute and could
increase his cardiac output to 50L/min and his PR to 220 beats per minute. The CO is
often divided by the Body Surface Area3 (BSA) to normalize the value with respect
to the size of the subject. In this case, it is referred to as Cardiac Index (CI).

The rest of the section describes the main methods that are commonly employed
for the measurement of CO. Since the CO is a flow (even though referred to the heart),
it is often referred to asΦ, especially in the general theory and the in-vitro modelling
context.

2.1.1 Indicator dilution methods

Several techniques for the measurement of CO make use of the dilution of an indica-
tor in blood.

Remark In the rest of this thesis, the flow is usually represented by the symbol
Φ(t), while the abbreviation CO, which also is a flow (cardiac flow), is only used for
cardiac measurements.

The indicator dilution theory is based on the following concept: if the concen-
tration of an indicator (or tracer) that is uniformly dispersed in an unknown volume
V is determined, and the volume of the indicator (dose) is known, then the unknown
volume can be determined too. Since Φ(t) = dV (t)/dt (Φ(t) and V (t) are the in-
stantaneous flow and the volume of the carrier respectively) and C(t) = dm/dV (m

2This is true only if we assume that there is no regurgitation (valve insufficiency), otherwise SV �=
Ved −Ves .

3There are several formulas to determine the BSA based on the weight and the height of the pa-
tient. One of the most common is the Dubois and Dubois formula (1917), which estimates the BSA
as BSA(cm2) = 71.84 · weight0.425 · height0.725, where weight and height are given in kg and cm
respectively.
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and C(t) are the mass of the tracer and its concentration at time t respectively), a
differential equation as given in Eq. (2.2) can be derived. The blood flow is usually
measured in liters per minute.

Φ(t) = dV (t)

dt
= 1

C(t)

dm

dt
(2.2)

Two main applications of Eq. (2.2) are used depending on the tracer infusion
technique [19–22].

• Continuous tracer infusion, when the tracer is continuously injected into the
body during all the measurement process.

• Rapid tracer injection, when the infusion is performed by a fast injection of a
small dose (bolus) of tracer.

Both of them, together with their main applications, are explained in this section.

Indicator dilution techniques that use a continuous tracer infusion

As these techniques use the injection of a large amount of contrast, the adopted con-
trast must be absolutely inert, harmless, and non-toxic. There are at least two tracers
that fulfill these requirements: oxygen, which is used in the Fick technique (Fick,
1870), and heat, which is used in the continuous thermodilution technique (Fegler,
1954 [23]) .

Fick technique

Figure 2.3: Scheme of a continuous injection method.

Two sites for the indicator concentration measurement (see Fig. (2.3)) are fixed:
the first site a is located before the injection point while the second one b is located
after it. Thus, assuming constant concentrations of the tracer Ca and Cb, steady flow
Φa = Φb = dV/dt , and using Eq. (2.2), Eq. (2.3) can be derived.

Cb −Ca =
(

dmb
dt
dVb
dt

)
−
(

dma
dt
dVa
dt

)
=

d(mb−ma)

dt

Φ
(2.3)
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Since d(mb−ma)/dt represents the tracer injection dm/dt between the sampling
points, Eq. (2.3) can be expressed as given in Eq. (2.4), which is the basic equation
of the Fick method.

Φ =
dm
dt

Cb −Ca
(2.4)

Figure 2.4: Fick method set-up.

The “trick” of the method (see Fig. (2.4)) is that the injection is naturally made by
the lungs, and Ca and Cb are respectively the venous and the arterial concentration
of oxygen (O2). Since the concentration of O2 is different in the different venous
returns, the sampling point a is placed in the pulmonary artery, after the venous
blood has been mixed by the right ventricle. The blood samples of the so called
“mixed venous blood” are drawn by a catheter inserted through the jugular vein4 (or
the subclavian vein5) across the right atrium and ventricle up to the pulmonary artery.
Then the blood samples are analyzed by a gas analyzer device for the measurement
of the O2 concentration. The choice for the arterial sampling site is not critical, since
the blood from the lung capillaries is well mixed. An arm or a leg artery is usually
used.

The measurement of the injected tracer (i.e., the breathed oxygen) is performed
by making the patient breath pure oxygen from a spirometer [24]. The exhaled CO2

is absorbed by a soda-lime absorber, so that the oxygen injection rate dm/dt (or

4The jugular vein carries blood from the brain to the superior vena cava and then into the right
atrium.

5The subclavian vein carries blood from the arm to the superior vena cava and then into the right
atrium.
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consumption) can be directly measured by the net gas-flow. This method had been
considered as the standard technique until the thermodilution replaced it.

Warm (continuous) thermodilution technique
Like oxygen, heat is non-toxic and naturally cleared. Therefore, it is a perfect

indicator to perform a continuous infusion technique. Heat may also be dissipated
through the walls of the blood vessels between the injection and the sampling site,
therefore, this distance should be as short as possible. Unfortunately, in order to have
an adequate mixing this distance should be long. The compromise that is usually
adopted consists of the indicator infusion in the RA and its sampling in the PA.

Actually, for continuous infusion, it is not practical to inject heated or cool saline.
Therefore, in the continuous infusion, heat is provided by an electric heater (resistor)
and the temperature, which determines the concentration of the tracer (heat), is mea-
sured by a thermistor6. Eq. (2.4) can still be applied. The term dm/dt is given by
the heat q̇ (expressed in Watt), and the term Cb −Ca is given by the temperature
difference Tb −Ta (expressed in Kelvin) times the specific heat of the blood cb (ex-
pressed in J · kg−1 · K−1) times the density of the blood ρb (expressed in kg ·m−3).
In conclusion, the formulation of Eq. (2.4) for the thermodilution technique is given
as in Eq. (2.5).

Φ = q̇

cbρb (Tb −Ta)
(2.5)

The mass of the tracer is now expressed by the amount of supplied energy (in
Joule) and its concentration is given in J ·m−3 by the term cbρbT . The thermistors
are usually placed in a Wheatstone configuration [19, 25]. This technique has be-
come very common in the clinical practice and everything is integrated in one single
catheter.

The main problem is related to the use of the catheter. This catheter, which is re-
ferred to as Swan-Ganz catheter from the name of the inventors in 1970 [26], includes
not only the circuitry for the thermistor, but also the cable for the heating coil (resis-
tor). Unfortunately, according to several statistical studies [27, 28], the Swan-Ganz
catheterization increases the risk of death in ill patients.

The advantage of these continuous methods is the possibility of a continuous
monitoring of the CO. However, several techniques based on different applications
of Eq. (2.2) make use of a single tracer-bolus injection.

Indicator dilution techniques that use a rapid injection of the tracer

The field of the rapid injection techniques is really vast and under continuous devel-
opment [1, 6, 8, 10, 11, 13, 29–32]. This is due to the fact that the constraints about

6A thermistor is a semiconductor thermometer, which uses the relation between temperature and
material resistivity for the temperature measurement [19, 25].
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the nature of the tracer are less strict, since only a bolus of indicator is injected.
Invasive techniques, similar to the warm thermodilution, are commonly used, but
more advanced developments are leading towards non-invasive applications. After
an overview of the basic principles of these methods, the standard techniques that are
commonly adopted in the clinical practice are presented.

Figure 2.5: Measurement of the tracer concentration versus time (IDC) in
an infinite tube model. The indicator is injected at distance 0
and detected at distance x0 from the origin.

Eq. (2.2) is now considered from a different perspective. C(t) is not constant
anymore. In practice, as shown in Fig. (2.5), the indicator is rapidly injected into a
fluid dynamic system where a carrier fluid (in our specific case blood) is flowing, and
the indicator concentration-time curve C(t) is measured at the sampling site. C(t)
is referred to as Indicator Dilution Curve (IDC). Essential requirement is that the
indicator mixes completely with the carrier. The IDC contains all the information
to estimate the flow, whose value is derived from Eq. (2.2) by an integration over
time as shown in Eq. (2.6). The flow is assumed to be constant, so that Φ can be
moved out of the integration. The resulting formula, referred to as Stewart-Hamilton
equation [33, 34], gives the measurement of the mean flow Φ.

∞∫
0

ΦC (t)dt = Φ

∞∫
0

C (t)dt =
∞∫
0

dm

dt
dt = m �⇒ Φ = m

∞∫
0
C (t)dt

(2.6)
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Eq. (2.6) shows that the injection and subsequent detection of an indicator allows
the measurement of flow.

The calculation of the integral in Eq. (2.6) is not trivial. Since the circulatory
system is a closed system, there is the problem of the recirculation of the contrast.
As a consequence, the tail of the IDC is masked by the rises due to the contrast
recirculation (see Fig. (2.6)). In addition, the IDC is often very noisy. Therefore, a
model is necessary to fit the IDC and calculate its integral (see section 4.2).

Figure 2.6: The continuous line shows the theoretical IDC (first passage of
the indicator) while the dots represent the measured IDC. The
second rise due to the recirculation and the noise due to the
measurement system are evident.

All the IDC methods are based on the following assumptions [22, 35], which are
also cause of measurement errors.

• The blood flow is constant during the measurement (about one minute).

• There is an instantaneous and uniform mixing of the tracer.

• The injection is so fast to be modelled by a dirac impulse.

• The loss of indicator is either absent or known.

The use of different indicators leads to different sensors and techniques. The most
common techniques are the cold thermodilution, the dye dilution, and the lithium
dilution [19–21].
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Cold thermodilution
The cold thermodilution was first introduced by Fegler in 1954 [36]. The indica-

tor is either cold dextrose or saline (blood-isotonic solution). As shown in Fig. (2.7),
a Swan-Ganz catheter is inserted via a central vein (usually the internal jugular or
subclavian) through the right atrium and ventricle so that its tip lies in the pulmonary
artery [26, 27]. It is carried in the right position by the dragging force of the flow-
ing blood thanks to a doughnut-shaped air-filled balloon on the tip of the catheter.
The cold solution is injected rapidly through a port of the catheter that ends at a side
hole in the right atrium. The cold solution mixes with blood in the right atrium and
ventricle before passing into the pulmonary artery, where the temperature decrease is
sensed by a thermistor on the side of the catheter. The CO is then calculated from the
temperature-time curve.

Figure 2.7: Swan-Ganz catheter for cold thermodilution. The IDC is mea-
sured by the temperature fall.

With the same interpretation of heat and temperature that is used in Eq. (2.5),
Eq. (2.6) can be written as in Eq. (2.7), where q is the total injected heat expressed in
Joule and ∆T is the temperature fall expressed in Kelvin (cb and ρb are the same as
in Eq. (2.5)).

Φ = q

cbρb
∞∫
t0

−∆T (t)dt
(2.7)

Dye dilution
Also a colored dye such as indocyanine green7, usually referred to as cardio-

green, meets all the necessary requirements of a “good” indicator: it is inert, harm-

7Also other dye indicators are used, such as Evans Blue (absorption peak at 640nm and 50% loss in
5 days) and Coomassie Blue (absorption peak around 590nm and 50% loss in 15-20 minutes).
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less, measurable, and economic. Using the principle of absorption photometry, the
concentration of cardiogreen, which is usually injected into the pulmonary artery, can
be detected by the light absorption peak at the wave-length of 805nm.

In the past, blood samples had to be drawn by a catheter placed in the femoral or
brachial artery and analyzed by an external photometry device. Nowadays, the use of
optical fibers allows in-situ measurements.

About 50% of the dye is excreted by the kidneys in the first 10 minutes, so that
repeated measurements are possible too. Once the system is calibrated, meaning that
the peak absorption is related to the concentration C (t) of the dye, the flow is directly
given by Eq. (2.6).

Lithium dilution
Lithium is a fluid that can be injected and detected by a specific sensor [37–40].

The sensor consists of a lithium-selective electrode in a flow-through cell. Two Ag-
AgCl electrodes measure the potential across a lithium selective membrane. Accord-
ing to the Nernst equation [19], the electric potential E (Volt) across a membrane
is given as in Eq. (2.8), where Cext and Cint are the external and the internal (with
respect to the membrane) lithium activities, which correspond to the lithium ionic
concentrations, R is the gas constant (8.314 J ·mol−1 · K−1), T is the absolute tem-
perature (Kelvin), F is the Faraday constant (96485 C ·mol−1), and n is the valence
of the ions, which for lithium ions (Li+) is 1.

E = RT

nF

ln(Cext)

ln(Cint)
(2.8)

As a result, the transducer measures a voltage that is logarithmically related to
the lithium concentration. The sensor is connected to a three-way tap on the arterial
line and a small peristaltic pump draws blood with a flow of 4.5ml/min.

After calibration, the lithium concentration is determined and a lithium IDC gen-
erated. The time integral of the measured IDC is used as given in Eq. (2.6) for the CO
assessment. Moreover, based on the IDC CO measurement and the establishment of
the relation pressure-volume (compliance), a continuous COmonitoring is performed
too .

2.1.2 Angiography

Angiography is an investigation that makes use of either x-rays or radionuclides. Al-
though a contrast is injected, typical applications do not include the measurement of
an IDC. The detection of the contrast allows the application of bi- and tri-dimensional
image analysis techniques in order to estimate the EF and the volumes of the cardiac
chambers. Thus, the CO can be estimated by Eq. (2.1) once the PR is known.
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The use of x-rays or radioactive substances may be a serious contraindication to
the use of these methods. In fact, the interaction at the level of cellular nuclei due to
x- and γ -radiations does not permit to classify these methods as “inert”, and specific
safety precautions are required. In the two following sections both techniques are
briefly explained [21, 24, 41, 42].

Radionuclide techniques

In the radionuclide angiography a small amount of radioisotopes, normally indicated
as radiopharmaceuticals, is peripherally injected. The radioactive decay of radioiso-
topes leads to the emission of α and β particles as well as γ - and x-radiation. Hence,
the detection of the indicator is performed by radioactivity measurements. It is per-
formed by a scintillation camera (Anger 1959), usually referred to as gamma-camera.
The gamma-camera is a photon counter (minimal photon energy � 50keV)8. It con-
sists of a scintillator crystal (NaI or NaTl) that covers a matrix of photomultiplier
tubes. Only γ - or x-radiation can be detected with detectors that are external to the
body. The information detected and recorded by these scanners is analyzed and pro-
cessed to generate images of the target anatomical structures.

The emission tomography systems are divided in two main groups, depending on
the type of radiation emitted by the adopted radiopharmaceutical.

• The Single Photon Emission Computed Tomography (SPECT) system makes
use of routine single photon gamma emitters such as 99mTc, 131I, 123I, 67Ga, and
201Tl. It is generally designed to collect data from different angles.

• The Positron Emission Tomography (PET) system detects annihilation radia-
tion from positron emitters such as 11C, 13N, 15O, 18F, and 68Ga. It consists
of two or more opposed detectors that permit the detection of the two 511keV
gamma photons that are emitted simultaneously in opposite directions by the
annihilation process. Therefore, the line that intercept the emission point can
be determined.

The most advanced radionuclide technique in order to estimate EF and then CO is
theMulti-Gate imaging (MUGA, also known as ventriculogram), where the gamma-
camera takes more images (about 60) triggered by the ECG signal.

The measurement of an IDC is also feasible. In fact, since the images represent
the concentration of the radiopharmaceuticals, it is always possible to fix a Region Of

81eV is the energy acquired by an electron (1.602×10−19 C) when inserted in an electrical field of 1
Volt. Hence, 1eV=1.602×10−19 J. For instance, in case of x-radiation, we can calculate the energy by
the formula E = h̄ cλ , with c equal to the light speed, λ equal to the radiation wave-length and h̄ equal

to the Planck’s constant (6.626× 10−34 Js). The average wave-length of the x-radiation is 10−1nm
resulting with an energy E = 6.626·10−34Js·3·108ms−1

10−10m·1.602·10−19eV−1J = 12.5keV.
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Interest (ROI) and record an IDC based, for instance, on the average video-intensity
in the ROI. Therefore, the flow can be estimated by Eq. (2.6).

Since radionuclides cannot be considered as inert, patients in special condition,
such as for instance women who are pregnant or breast-feeding, are not allowed to
undergo nuclear imaging.

X-ray techniques

The x-ray angiography is the standard technique to diagnose blood-vessel stenosis
and aneurysm9, but it can be also adopted to estimate cardiac volumes and CO.

A standard angiography procedure requires the insertion of a catheter through the
femoral artery up to the heart. The injection of a radiopaque is performed through
this catheter. A radiopaque is a substance that absorbs x-radiation (e.g., Iodine). As a
consequence, the blood mixed with the radiopaque absorbs the x-rays and is detected
by the x-ray scanner.

The x-ray scanner is used in fluoroscopy-mode10, so that a continuous monitoring
can be performed. The accuracy of volumes and CO (based on Eq. (2.1)) is improved
by the employement of tri-dimensional imaging techniques. The technology that
allows a tri-dimensional image reconstruction is the Computerized Axial Tomography
(CAT). It is based on the Radon transform (Johann Radon, 1917) of multiple x-ray
projections [41, 43].

As for radionuclides techniques, since the whole procedure takes about 30 min-
utes, the dose11 of x-rays absorbed by the patient should be seriously considered.

2.1.3 Magnetic resonance imaging

The Magnetic Resonance Imaging (MRI) [41, 44] is a tri-dimensional imaging tech-
nique used to produce high quality images of the inside of the human body. MRI
is based on the principles of Nuclear Magnetic Resonance (NMR), a spectroscopic
technique that allows the distinction between different biological tissues depending
on the hydrogen concentration.

9Stenosis is an abnormal narrowing of an artery or vein (it can be also referred to the cardiac valves)
while aneurysm is an abnormal widening of it.
10That means that it makes use of a BI (Brightness Intensifier) or, in the near future, of flat panels

made by the TFT (Thin-Film Transistors) technology, for real-time imaging.
11Dose is the energy that is absorbed per unit mass of material invested by x-rays. In the International

System it is measured in Gray [Gy], 1Gy=1Jkg−1. In case of biological tissues it is measured by the
equivalent dose, expressed in Sievert [Sv]. The equivalent dose takes into account many factors that
determine the biological interaction. The limit dose for common people is 1.7 mSv/year, while the dose
given by a fluoroscopy is about 1cGy � 1mSv [24].
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The patients are introduced inside a tunnel where a constant12 magnetic field (up
to 3 Tesla) is combined with a radiofrequency-alternate one. The radiofrequency
magnetic field produces the rotation of the hydrogen dipoles. The subsequent relax-
ation of the dipoles is detected and analyzed to distinguish among different tissues.
The system is usually considered to be harmless and shows high contrast images. In
general, no indicator is needed since the tissues are already recognized13.

The blood flow can be measured either by Eq. (2.1), after estimating the stroke
volume, or by the phase-shift measurement of the relaxation signal coming from the
blood (the principle is similar to the pulsed Doppler one, see section 2.1.4)

The presence of the tunnel has always represented a problem due to claustropho-
bic panic attacks, but new developments in the generation of magnetic fields might
overcome the problem. New “C-shaped” MRI devices are becoming commercially
available.

A disadvantage of MRI is the limited applicability due to the generation of pow-
erful magnetic fields. Any metallic instrument is absolutely forbidden near the MRI
scanner, and electronic devices without an appropriate magnetic insulation do not
work. As a result, the scanner cannot be used in operating rooms and intensive care
units. Furthermore, due to the time required for performing the analysis (mainly due
to the preparation of the patient), it does not suit emergency routines. The high costs
should be considered too.

2.1.4 Ultrasound flowmeter

The ultrasound flowmeter, referred to as echo-Doppler [19, 20, 46], is a non-invasive
device for the instantaneous blood flow measurement. It is one of the several Modes
performed by a typical ultrasound echo-machine (see section 3.1). Actually, it per-
forms only the measurement of the instantaneous blood velocity; for the estimation
of the CO, the integral blood velocity, which is the integral of instantaneous blood
flow velocities during one cardiac cycle, is measured in the left ventricular outflow
tract (other sites can be used) and multiplied times the cross-sectional area and the
PR [46]. The cross-sectional area is measured by the ultrasound-scanner in B-Mode
(see section 3.1).

The ultrasound flowmeter is based on the principle of the Doppler effect (see
Fig. (2.8)) and it is commonly used in the clinical practice.

A transmitter (T ) and a receiver (R) are integrated in the same probe. The focus-
depth, where the blood velocity is measured, is given by the angle β, which depends
on the structure of the transducer and can be varied. The transducer transmits ultra-
sound pressure-waves with frequency ft . If c is the propagation velocity of ultrasound

12Actually it is not constant, there is a gradient that is used for the reconstruction of the image.
13However, the perfusion of special contrast agents, such as gadolinium, is also performed [31, 45].
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Figure 2.8: Scheme of the echo-Doppler principle.

(in water, main component of the human body, it is 1480ms−1) and v is the blood ve-
locity, the blood particles receive the signal with a frequency equal to ft

(
1− v cosα

c

)
and the receiver R receives the signal reflected by the blood particles with a frequency
fr given as in Eq. (2.9).

fr = ft

(
c−v cosα

c

)(
c

c+v cos (α +β)

)
= ft

(
c−v cosα

c+v cos(α +β)

)
(2.9)

The frequency shift � f = ft − fr , known as the Doppler frequency (frequency
of the Doppler signal), is given as in Eq. (2.10).

� f = ft
(
1− c−v cosα

c+v cos(α+β)

)
� v

(
2 ft
c

)
cosα for small β and v � c (2.10)

Hence, since ft and c are known, the Doppler frequency � f is linearly related
to the blood velocity. For instance, with blood velocity v of 1ms−1, the typical ft
of 5MHz, and α = 45◦, we obtain � f � 5kHz. It is within the human audibility
range; that is the reason why the user interface is very often a loud-speaker. An
alternative way is to apply the Fast Fourier Transform (FFT) to the Doppler signal
for the spectrum estimation.

In the most common implementation of the system, � f is the frequency of the
output signal obtained by multiplication (mixer) of the transmitted and received sig-
nals followed by low-pass filtering14. The result is the determination of the velocity

14Suppose that St = AT cos(2π ft t) is the transmitted signal and Sr = AR cos(2π fr t)
is the received one. Then the mixer multiplies St times Sr obtaining St · Sr =
AT AR
2 [cos(2π ( ft − fr ) t)+ cos(2π ( ft + fr ) t)]. Finally, by low-pass filtering, the high frequency

component ( ft + fr ) is removed and the remaining part represents the Doppler signal with frequency
∆ f = ( ft − fr ).
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without any knowledge of the flow direction. However, some methods have been de-
veloped and implemented in the ultrasound scanners to distinguish between motion
toward and motion away from the transducer15.

The described system is the simplest application of the Doppler-effect for blood
velocity estimation and it is referred to as continuous wave (CW) or narrow-band
Doppler. The main disadvantage of such a technique is the difficulty to distinguish
between different moving targets.

This problem is overcome by more advanced systems, referred to as pulsed wave
(PW) or wide-band Doppler [46, 48]. The same elements of the transducer are used
as transmitter and receiver and a train of bursts is transmitted and received back. As
a consequence it is possible to determine the position of the targets depending on
the delays of the echoes as in the M- and B-Mode approaches (see section 3.1). To
achieve a good spatial resolution, the transmitted pulse duration should be very short.
On the other hand, the achievement of a good frequency resolution, which leads
to a good velocity resolution, requires the use of long bursts (think of a windowed
Fourier transform). The usual compromise is a 5MHz (carrier frequency) burst of
1µs duration (5 cycles).

Figure 2.9: Pulsed Doppler example. In (a) it is shown the transmitted train
of bursts while in (b) it is shown the sampled Doppler signal.

Fig. (2.9) shows the principles of the PW-Doppler assuming α = 0. In (a) it is
shown a train of pulses (bursts) reflected by a particle (blood cell) that is moving

15Among the processing methods that have been developed in order to distinguish the velocity direc-
tion, commonly used are the Single-Sideband Detection, the Heterodyne Detection, and the Quadrature
Phase Detection [47].
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away from the transducer (increasing depth) with a velocity equal to ∆d · (PRF)/2,
where PRF stands for Pulse Repetition Frequency. The motion of the particle makes
the echo of each pulse relatively delayed by∆d . In (b) it is shown the Doppler signal
with frequency ∆ f , which is sampled with a frequency equal to the PRF, since the
transmitting and receiving circuits are synchronized (they are applied to the same
crystals). A simple explanation of the relation between the signal of frequency fb
obtained in (b) and the Doppler signal is the following. The pulse is a spacial wave
of length λ = c/ ft , where ft is the carrier frequency. If this wave is received with
a velocity equal to 2v, then the resulting frequency at the receiver is fb = 2v/λ =
2v ft/c, which is the same expression of∆ f as given in Eq. (2.10) if α = 0. This is an
interpretation of the discrete system that is described in Fig. (2.9) in the continuous
domain16. To consider the general case α �= 0, it is necessary to project the blood
velocity −→v on the direction of the ultrasound propagation velocity (direction of −→c ),
i.e., v = ∣∣−→v ∣∣cos(α) (refer to Fig. (2.8) with β = 0).

A new burst is not transmitted until the reflection from the deepest layer is re-
ceived back. Hence, the maximum PRF (pulse repetition frequency) equals c/2d
(with d equal to the distance between the transducer and the deepest layer). The PRF
represents also the sampling frequency applied to the Doppler signal, since the whole
system has to be synchronized (see Fig. (2.9)). Therefore, the system must satisfy
the Nyquist relation PRF> 2� f , which combined with Eq. (2.10) defines the maxi-
mum detectable velocity as given in Eq. (2.11), where ft is now the carrier frequency
within the single pulse.

vmax = PRF

(
c

4 ft cosα

)
= c2

8 ftd cosα
(2.11)

For shorter distance d , and consequently greater PRF, the maximum detectable
velocity is higher. When the blood velocity is higher than vmax, the aliasing error
occurs and the signal interpretation fails. In new machines it is usually implemented
a routine to control and handle these errors in order to avoid a wrong diagnosis.

The advantage of this technique is the determination of the blood velocity profile.
The delay between transmission and reception of a single burst is a direct indication
of the distance where it has been reflected. Therefore, if the receiver decomposes the
detected echoes into different time-windows (referred to as gates, usually between 6
and 32), each window selects the part of the echoes reflected from a specific depth
interval. The received bursts can be processed concurrently in different channels

16The same principles can be viewed under a different perspective. Instead of focusing on the Doppler
frequency, the phase shift (ϕ) could be directly considered and evaluated by a cross-correlation between
the received pulses and the transmitted ones. Once the phase shift is estimated, the blood velocity is

given as v =PRF·∆d2 =PRF·
(

ϕc
4π ft

)
, since the distance ∆d/2 that is covered by the blood particle

during the time period between two pulses (1/PRF) is determined by the phase shift (ϕ) (Fig. (2.9)).
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according to the time-window. The velocity profile is obtained by simply combining
the output from each channel. This technique is referred to as Multi-Gate Pulsed
Doppler.

Both continuous and pulsed Doppler present the problem of the clutter noise. It is
introduced by the slow motion of the tissues, which add low-frequency components
to the Doppler signal. For instance, the slow expansion and contraction of the vessel
walls17. In order to remove the clutter noise, a high-pass filter is implemented in
every system.

Up to now a substantial problem of the method has been neglected. The measured
blood velocity depends on the angle α between the transducer axis and the blood flow.
This angle is often unknown or just estimated, therefore, a substantial uncertainty
is introduced into the measurement. The only medical application where α can be
approximately estimated is the measurement of a laminar flow in a straight vessel.
The angle is estimated from the corresponding image of the longitudinal cross-section
of the blood-vessel. However, some methods are being developed to integrate in the
system a more accurate and fast estimation of the angle α. One of them is for instance
the modelled evaluation of the axial and lateral components of the velocity [49].

Some devices combine the Doppler-Mode with the B-Mode in order to show
the velocity profile with a color mapping scheme applied to the output image (color
flow imaging). A special scanner, referred to as duplex scanner, which combines the
technology required by both PW-Doppler and B-Mode analysis is needed.

Nowadays the measurement of CO by ultrasound echo-Doppler is performed also
with transesophageal probes (see section 3.4), resulting in measurements whose cor-
relation coefficient with the standard cold thermodilution is about 0.9 [50–59].

Remark The echo-Doppler principle for blood velocity measurements is not only
applied by means of ultrasound devices. Laser Doppler equipments are also avail-
able, but they can detect only the peripheral blood perfusion [21, 60].

2.1.5 Magnetic flowmeter

The magnetic flowmeter [19,21] is based on the Faraday’s law of induction [61]. If a
conductor (e.g., a copper wire) of length L is moving with velocity −→v perpendicular
to a magnetic field of flux density

−→
B (Tesla), then the inducted Electro-Motive Force

(EMF) across the ends of the conductor is given as in Eq. (2.12).

EMF=
∫
L

−→v ×−→
B ·−→dl = BLv (2.12)

17The blood vessels are elastic, for this reason they move slightly following the pressure waves
produced by the pumping action of the heart. This elasticity, referred to as compliance, introduces a
low-pass filter action in the circulatory system, which results in a more continuous blood flow.
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Figure 2.10: Scheme (section) of a magnetic flowmeter surrounding the
walls of a vessel.

Instead of the conductor (copper wire), the flowmeter depends on the movement
of blood, whose conductance is similar to that of saline. The application of the Fara-
day’s law to a magnetic flowmeter is given in Fig. (2.10), where the section of a blood
vessel with two applied electrodes is shown. The magnetic field

−→
B , the direction of

movement of the electrical conductor (blood velocity−→v ), and the line L between the
electrodes (vessel diameter) are all perpendicular to each other, so that Eq. (2.12) is
still valid. There is a linear relation between the inducted EMF and the blood veloc-
ity. Since L is known, the relation between blood flow Φ = vπL2/4 and inducted
EMF is derived from Eq. (2.12) and given as in Eq. (2.13).

Φ = (EMF) ·
(

πL

4B

)
(2.13)

If the ends of the conductor are connected to an external circuit, the inducted EMF
causes a current of intensity I that can be processed suitably (e.g., by a galvanometer)
for the assessment of the flow rate. The resistance of the moving conductor (blood
along the line L) can be represented by R to give the terminal voltage Vt = (EMF)−
RI . Thus, the system has to be calibrated with the estimated R.

This simple solution, which makes use of a constant magnetic field
−→
B , is influ-

enced by several errors, mainly recognized as polarization of the electrodes, random
voltage drift (mainly due to the amplifier), and appearance of the harmonic com-
ponents of the ECG signal, very similar to the harmonic components of the flow.
Drift and polarization are solved by the use of an alternate magnetic field, but this
introduces a new source of noise. In fact, the alternate magnetic field generates by
induction an alternate EMF18 in the circuit of the electrodes. A common solution to

18EMF = − ∂Φm
∂t , where Φm is the magnetic flux concatenated with the circuit.
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this problem is the use of a quadrature filter in order to remove the undesired compo-
nents.

In practice the system has two different applications. The first one makes use of a
toroidal structure of the transducer and has to be applied by surgery operation around
the blood vessel. The second one makes use of a catheter-tip probe. The probe can
be inserted through the femoral artery up to the root of the aorta in order to measure
the CO.

In mechanical applications (e.g., in-vitro measurements) the accuracy of the mea-
surement can reach 0.25% [21], but in clinical (in-vivo) applications it is often dif-
ficult to obtain correct measurements, since all the perpendicularities as well as the
estimation of the vessel diameter are influenced by several errors. Furthermore, us-
ing the catheter-tip probe, the transducer has to be perfectly centered in middle of the
vessel.

2.1.6 Impedance plethysmography

The bio-impedance method has the advantages of providing continuous CO measure-
ment at no risk to the patient [20, 21, 62]. A small current at the frequency of 20kHz
to 100kHz is passed through the thorax from a couple of electrodes while another
couple of sensing electrodes are used to measure the changes in impedance within
the thorax by using a high impedance galvanometer.

Figure 2.11: Cylindrical model for thorax tissue and blood impedance. At
and Ab are the tissue and blood sections while L is the cylinder
length.

A simplified model can be used to describe the thorax as a double cilinder made
of tissue and blood, as shown in Fig. (2.11). As a consequence, the total thorax
impedance Z is given by the parallel of the blood and tissue impedances Zb and Zt .
If Z is differentiated with respect to Zb, the resulting differential equation is given as
in Eq. (2.14).

dZ

dZb
= d

dZb

(
Zt Zb
Zt + Zb

)
=
(
Z

Zb

)2
(2.14)
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The biological impedance is in general represented by a complex number (espe-
cially the skin impedance), however, the blood impedance is mainly resistive and Zb
can be represented by a real number. From the model in Fig. (2.11) Zb = ρbL A

−1
b ,

where ρb is the blood resistivity (usually about 150 Ω · cm), Ab is the cross-section
of the blood compartment and L is the cylinder length. By differentiating the blood
volume Vb = L · Ab = (ρL2/Zb) with respect to Zb and substituting Zb with Z as
from Eq. (2.14), Eq. (2.15) can be derived.

dVb = d(AbL) = −
(

ρbL2

Z2

)
dZ (2.15)

Eq. (2.15) relates the blood volume variations to the total impedance variations,
so that blood volumes can be measured by means of electrical impedance measure-
ments. The contraction of the ventricles produces a cyclical change in transthoracic
impedance of about 0.5%. These changes are exploited by a specific equation, which
is referred to as Kubicek equation (1966), to assess the SV. Some assumptions are
made concerning the relationship between SV and net change in the thorax blood
volume. The impedance is assumed to mainly depend on the blood volume in the
lungs. Moreover, it is assumed that no blood leaves the lungs during systole. As a
consequence, the impedance would continuously decrease during systole. If the time
derivative Ż of the impedance during systole is estimated, the first order approxi-
mation of the total impedance variation ∆Z during the ejection time τe is given as
∆Z = Żτe. Combining this result with Eq. (2.15), the SV is given as in Eq. (2.16).

SV = −ρb
Ż L2τe
Z2

(2.16)

Obviously, since the total impedance is complex, the measured total impedance
Z is the module of the impedance and is a function of the adopted frequency. Eventu-
ally, once the SV is known, the CO can be derived by using Eq. (2.1). The accuracy of
the method is limited by several factors [20, 63]. First of all, the model in Fig. (2.11)
is a significant simplification of the real system. Moreover, the blood impedance de-
pends on several factors, such as the fractional volume concentration of the blood cell
as well as their shape and orientation. In addition to that, the effect of the blood flow
is still unknown and the measurements are affected by respiratory artifacts too.
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2.2 Ejection fraction

The measurement of the Ejection Fraction (EF) is a common clinical practice to eval-
uate the cardiac condition. In particular, it is a measure of the efficiency of the my-
ocardial contraction. If the end-diastolic (Ved) and the end-systolic (Ves) ventricular
volumes are measured, the percent EF is defined as given in Eq. (2.17).

EF%= Ved −Ves
Ved

·100 (2.17)

Possible approaches for the EF measurement is any clinical imaging technique
that allows a geometric estimation of Ved and Ves . They are mainly the MRI, ultra-
sound imaging, and nuclear imaging (see sections 2.1.2 and 2.1.3) [18, 46, 64–72].
The acquired images are analyzed by manual or automatic segmentation. Due to the
complex geometry of the RV, usually only the LV EF can be estimated.

Figure 2.12: The two cross-sectional planes used in the bi-plane method for
the estimation of the LV volume. The volume is assumed to
be represented by a stack of ellipses. The axes of each ellips
are determined by the lines that are perpendicular to the main
axis. If only one plane is used, then the ventricular volume
is modelled as a stack of circles and the perpendicular lines
represent the circle diameters.

When an ultrasound scanner is used, a fast method for EF measurements, which is
referred to as Teichholz technique [73], makes use of the M-mode echocardiography
(see section 3.1.2) and quantifies the EF based on the movement of the ventricular
endocardium along one line [74]. More accurate estimates are usually derived from
a LV bi-dimensional long-axis view, which provides information on a complete ven-
tricular section [18, 46].
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The employment of a geometrical model is necessary to transform a bi-dimensional
contour into a three-dimensional one (volume). A simple model assumes the ventricle
to be represented by a stack of circles along the main axis (long axis) [46,68]. If also
the information on a second ventricular section is considered, the volume estimate can
be derived from two perpendicular long axis planes (bi-plane method) [46,67,68,70].
This technique defines the ventricle as a stack of ellipses and adds one degree of free-
dom to the geometrical volume model. The result is an accurate interpolation of the
ventricular endocardium [68]. However, none of these techniques, which are based
on geometrical models, can detect abnormal shapes due to pathologic conditions (e.g,
an aneurysm).

With MRI and advanced tri-dimensional ultrasound imaging, it is possible to
measure the real contour for a series of short axes planes (normal to the long axis)
[66, 69]. As tri-dimensional echocardiography is relatively new, MRI is well estab-
lished and considered as the gold standard technique for EF and ventricular volume
estimates [18, 67].

Unfortunately, geometric EF measurements are time consuming. The reliability
of automatic border detection algorithms for echo images is sometimes very limited
and cardiologists prefer a manual delineation of the cardiac contours. As a conse-
quence, the EF assessment not only slows down dramatically the clinical practice, but
also requires the employment of specialized personnel, such as radiologists or cardi-
ologists. Also MRI, despite the better image quality, requires a long procedure both
for patient scanning and for data analysis, so that it does not suit emergency routines.
Moreover, patients that are claustrophobic or have an implanted pace-maker cannot
be scanned.

Geometric EF estimates do not consider blood volume transfers. Some patients
present a significant insufficiency of the mitral valve. In this case, the geometric
EF is the sum of two undistinguished terms: the Forward EF (FEF), which is due
to the blood volume that is ejected into the aorta, and the Regurgitant EF (REF),
which is due to the blood volume that is ejected back into the LA due to mitral valve
insufficiency19. If we refer to the SV as the volume of blood that is ejected from the
LV into the aorta per cardiac cycle, then FEF = SV/Ved and REF = (Ved − Ves −
SV)/Ved = EF− FEF. Therefore, only the FEF is a real indicator of the cardiac
efficiency and is related to SV and CO.

The FEF assessment can be performed by use of indicator dilution techniques
[20, 21, 35]. A cold saline (thermodilution) or a dye (dye dilution) bolus is injected
for the measurement [20, 35]. The injected indicator bolus is detected either in the
LV or in the aorta out-tract. The measurement is based on the detected indicator
concentration and, therefore, is related to blood volume transfers. A mathematical
interpretation of the measured IDC allows the FEF assessment [20].

19The same reasoning also regards aortic valve insufficiency.
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Figure 2.13: Mono-compartment cylinder-piston model for LV simulation.
An input and an output valve are included and represent the
mitral and aortic valve respectively.

A ventricle can be modelled as a mono-compartment system, whose volume
changes as a periodic function of time. This can be represented by a cilinder-piston
system as shown in Fig. (2.13). The system is filled with an incompressible fluid.
Two valves are used for the fluid input and output and are driven by pressure varia-
tions. During diastole, the volume increases, the output valve is closed, and the input
valve is open for the ventricle filling. During systole, the volume decreases, the input
valve is closed, and the output valve is open for the ejection of the ventricular fluid.

If an indicator bolus is rapidly injected within a diastolic phase and the mixing
is perfect, then the contrast concentration at the nth end-diastolic phase is given by
Cn and equals the indicator mass m in the ventricle divided by Ved . During the
following systole, part of the contrast mass (∆m) in ejected out of the cylinder. The
concentration Cn+1 at the subsequent end-diastole is given as in Eq. (2.18).

Cn+1 = m−∆m

Ved
= Cn ·

(
1− Ved −Ves

Ved

)
(2.18)

Combining Eq. (2.17) and Eq. (2.18), the percent EF can be expressed in terms
of Cn and Cn+1 as given in Eq. (2.19).

EF=
(
1− Cn+1

Cn

)
·100 (2.19)

The sampling timing of Cn and Cn+1 is usually controlled by an electrocardio-
graphic (ECG) trigger, so that the sampling rate is based on the cardiac electrical
activity. Moreover, in order ensure that the indicator recirculation (see Fig. (2.6))
does not to influence the measurement, the samples Cn and Cn+1 should be measured
before the recirculation time.

The EF estimate in Eq. (2.19) only considers the fluid that is ejected through
the output valve (aortic valve in the LV). If the input valve is insufficient, i.e., it
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leaks, part of the contrast is ejected back through the input valve (mitral valve in
the LV). However, this fraction of contrast comes again into the ventricle during the
subsequent diastole and, therefore, does not contribute to∆m. As a consequence, the
EF definition in Eq. (2.19) is better referred to as Forward EF (FEF)20.

Figure 2.14: Example of noisy IDC measured by contrast echocardiography
(see section 3.4). An attempt to determine the contrast concen-
trations C(n) and C(n+ 1) at two subsequent heart beats is
shown.

If the SNR of the measured IDC is low (see Fig. (2.14)), the definition of the
right samples to estimate Cn and Cn+1 is difficult, resulting in very inaccurate mea-
surements. A better approach makes use of an IDC model interpolation. The LV is
well approximated by a simple mono-compartment model, whose impulse response
equals an exponential function (see section 4.2.1). If C0 is the concentration after
a sudden indicator injection in the compartment at time t = 0, then the IDC C(t) is
represented as given in Eq. (2.20), where τ is the time constant [8].

C(t) = C0 · e −t
τ (2.20)

The exponential function in Eq. (2.20) can be used to fit the IDC as measured
from the model that is shown in Fig. (2.13). The ripple due to the pulsatile flow
does not represent a problem because it is averaged over a large number of cycles.
Once the exponential model is fitted to the IDC down-slope, the FEF is measured by
Eq. (2.19) as given in Eq. (2.21), where ∆t is the cardiac period.

FEF= 1− Cn+1
Cn

= 1− e
−(t+∆t)

τ

e
−t
τ

= 1− e
−∆t

τ (2.21)

20Again, a similar reasoning may be also applied to aortic valve insufficiency.
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Eq. (2.21) is commonly used for IDC FEF measurements. However, it is valid
only when the contrast bolus is rapidly injected into the ventricle within a diastolic
phase, which is the reason why a correct FEF estimation requires a ventricular injec-
tion (Holt method [75]). In fact, the measurement must be performed in the LV (or
aorta out-tract) during contrast wash-out with no incoming contrast [8]. Therefore,
catheterization is needed and the clinical application of the method is very limited
due to the high invasiveness.

An invasiveness reduction is accomplished by use of radio-opaque contrast or
radionuclides for x-ray or nuclear angiography (see section 2.1.2), which allow a
non-invasive detection of the indicator. In fact, the FEF can be assessed by videoden-
sitometry of cine-loops [76–78]. However, despite a non-invasive contrast detection,
contrast injection still needs cardiac catheterization (invasiveness issue) and, as dis-
cussed in section 2.1.2, the use of x-rays or radionuclides is not recommended in
several cases.

In healthy people the EF is usually bounded between 50% and 85%. However, in
heart failure patients the EF can even drop down to 10%. In order to keep a sufficient
value of CO, the decrease of EF is compensated by an increase of both Ved and Ves
(dilated ventricle), so that the SV can still guarantee a sufficient CO.

2.3 Pulmonary blood volume

Figure 2.15: Scheme of the common blood volume measurements: Pul-
monary Blood Volume (PBV), Central Blood Volume (CBV),
and Intra-Thoracic Blood Volume (ITBV). The volumes of the
compartments that are included in the measurement are filled
with gray color.
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Blood volume measurements provide valuable information on the circulatory sys-
tem functionality. In particular, the Pulmonary Blood Volume (PBV, blood volume
between the pulmonary artery and the LA), the Central Blood Volume (CBV, blood
volume between the pulmonary artery and the LV) and the Intra-Thoracic Blood Vol-
ume (ITBV, blood volume between the RA and the LV) are important parameters in
anaesthesiology, intensive care, and cardiology to evaluate the cardiac preload and
the symmetry of the cardiac efficiency. For instance, LV EF and SV are closely
related to PBV and CBV [79, 80]. A scheme of the typical blood volume measure-
ments is shown in Fig. (2.15). In order to make the volumes independent on the size
of the subject, they are usually normalized (indexed) as already explained for the CI
(section 2.1). PBV measurements are based on trans-pulmonary indicator dilution
techniques, which make use of an injection and subsequent detection of an indicator
bolus.

Nowadays, trans-pulmonary indicator dilution techniques are very invasive due
to the need for a double catheterization [79–84]. In fact, a catheter for thermodilution
(or dye dilution) must be inserted through the femoral artery up to the aorta, where
the IDC is measured. Moreover, since the indicator must be injected into a central
vein, the insertion of a second catheter is necessary to reach the injection site. The
Mean Transit Time (MTT) that the indicator takes to cover the distance between the
injection site (central vein) and the detection site (aorta out-tract) is multiplied times
the CO as given in Eq. (2.22) for the measurement of the blood volume (V ) between
injection and detection site.

V =MTT ·CO (2.22)

The measured V is the PBV plus the average volume of the four cardiac cham-
bers, i.e., the ITBV. Common applications make use of a Pulmonary Artery Catheter
(PAC) in order to inject the contrast in the pulmonary artery and measure the CBV
[27]. The measurement of the MTT between the first and the second passage of the
indicator allows the assessment of the Total Circulating Blood Volume (TCBV).

An alternative technique, whose application is non-invasive, is the impedance
plethysmography (see section 2.1.6). In fact, the application of Eq. (2.15) allows the
determination of the blood volume variations in the thorax. However, it only allows
the measurement of differential values rather than absolute values.

2.4 Comparative evaluation of the available techniques

The presented techniques for CO, EF, and blood volumes measurements are com-
pared. Nowadays, what is considered the gold standard technique for CO measure-
ments is the thermodilution, especially the cold one, which also allows a simultaneous
RV EF estimate. Still very common in the clinical practice is the dye-dilution method,
especially after the introduction of optical fibers. The Fick method procedure is more
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complicated, since it requires the use of both a spirometer and a gas analyzer. This is
the reason why the thermodilution and the dye-dilution methods are preferred. Also
the use of lithium dilution is spreading due to the less invasive approach. The un-
certainty of the measure is similar in all the indicator dilution techniques and it can
be considered bounded in a range of ±0.5Lmin−1 (� ±10% of an average CO of
5Lmin−1 [35, 50]). The indicator dilution methods can be easily performed in the
operating room during surgery and in the intensive care unit. The main disadvantage
is the use of catheterization, which brings several risks and complications [27, 28].

The echo-Doppler technique does not imply catheterization and represents, to-
gether with the magnetic flowmeter and some lithium systems, the only solution to
obtain an direct instantaneous measurement. A disadvantage of the echo-Doppler
approach could be a limited accuracy, which derives from the uncertainty about the
velocity direction. Furthermore, it provides only velocity measurements. For the CO
estimation the cross sectional area of the vessel (the aorta for instance) must be also
determined, resulting in further measurement errors. However, as reported in sec-
tion 2.1.4, TEE Doppler measurements of CO correlates well with thermodilution.

Although we have mentioned the magnetic flowmeter, its medical application for
CO measurements is limited because of the combination of low accuracy (difficulties
in the probe positioning) and invasiveness.

The angiographic techniques are well established, but mainly focused on the di-
agnosis of stenosis and aneurysms of the blood vessels (especially the coronary ar-
teries21). Usually the CO is indirectly measured by Eq. (2.1). Furthermore, infusion
of radionuclides is not applicable to patients under surgery or intensive care as well
as to patient in special conditions (e.g., pregnant or breast feeding women).

The MRI technique is non-invasive and extremely accurate. The disadvantage is
mainly represented by the high cost of the equipment and its limited applicability in
emergency routines due to the tunnel-shape, the amplitude of the generated magnetic
fields, and the long time required for performing the analysis.

Rather than CO measurements, CAT and especially MRI can perform accurate
tri-dimensional measurements of LV EF. However, they are geometrical measure-
ments that cannot take into account any valve insufficiency. For an assessment of
the FEF, the employment of indicator dilution techniques is necessary. The assess-
ment of RV EF is better performed by PAC, since the RV geometry is rather complex
and difficult to model. Radionuclides are also used for EF assessments based on
IDC measurements. In general, the agreement between EF estimates made by dif-
ferent techniques shows large variances [18, 67, 68, 70, 71], so that the follow up of
cardiopath patients must make use of the same technique.

21The study of the coronary artery conditions by use of a tracer is often referred to as myocardium
perfusion (MP). According to the latest developments in the MP analysis, the measurement can also
be performed by use of ultrasound contrast agents. This technique is referred to as replenishment
curve [85, 86] (see section 3.3).
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The same measurements as by radiography, nuclear imaging, and MRI, can be
also performed by ultrasound tri-dimensional echocardiography. It is still in an early
stage, but it shows already promising results (see section 3.1.3). The disadvantage,
like for all the tri-dimensional techniques, is that the data processing is slow and has
to be executed off-line. Moreover, the quality (contrast, signal to noise ratio, etc.) of
echographic images is lower with respect to other 3-D imaging techniques (especially
MRI).

The plethysmography, which is based on bio-impedance measurements, despite
the non-invasive assessment of SV, does not show sufficient accuracy and for accurate
measurements of CO it is replaced by classic indicator dilution techniques. This
technique also allows the ITBV estimate, however, for an accurate measurement a
double catheterization is preferred.

As from this overview of the techniques that are commonly employed for cardiac
measurements, there is no unique approach for the simultaneous measurement of
CO, LV EF, RV EF, and blood volumes (ITBV, CBV, and PBV). Different techniques
must be used, which make the measurement a complex and slow procedure. More-
over, accurate measurements of CO and especially blood volumes require catheteri-
zation, resulting in very invasive applications. Also the measurement of FEF requires
catheterization, as well as the assessment of RV EF, whose geometrical assessment
is rather complex.

In this context, we propose a novel approach which makes use of ultrasound
contrast agents. It permits the simultaneous measurement of CO, LV EF, RV EF, and
blood volumes (ITBV, CBV, and PBV) by use of an ultrasound scanner and a single
peripheral injection of a small contrast agent bolus. A single minimally-invasive
measurement can replace the application of two time-consuming imaging techniques
(LV and RV EF measurements by MRI or echography) and a very invasive indicator
dilution technique (tras-pulmonary thermodilution or dye-dilution for CO and CBV
measurements). The measurements are based on the hemodynamics, therefore, they
are directly related to the cardiac efficiency without use of any geometrical model or
assumption.

The same principles can be applied to all the contrast imaging techniques (ra-
dionuclides, gadolinium, and iodine respectively for nuclear, magnetic, and x-ray
imaging). However, ultrasound contrast agents are inert (the contrast is basically
made of air bubbles, see section 3.2), resulting in a safe and easy measurement pro-
cedure, which is suitable for operating-room and emergency routines where ultra-
sound scanners are widely employed. In addition, since the analysis is performed
by use of an ultrasound scanner, the IDC measurement can be integrated with all the
information already available by standard ultrasound investigations (see section 3.1),
resulting in a complete and objective evaluation of the cardiac conditions, which can
be easily made in outpatients.
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Chapter 3

Echography and ultrasound contrast
agents

Tardi ingenii est rivulos consectari, fontes rerum non videre (Cicero).

After the introductory overview of the cardiac parameters to measure, in this
chapter we focus on the technology that we intend to use for our measurements. At
first, the basics of the ultrasound technology for clinical echography are explained
(section 3.1), then the characteristics and use of ultrasound contrast agents are de-
scribed (section 3.2) together with the specific techniques and modes for their de-
tection (section 3.3). In conclusion of the chapter, the clinical use of ultrasound
echography in cardiology is presented (section 3.4).

3.1 Ultrasound principles and echography

In this section the basics of ultrasound generation and propagation (section 3.1.1), the
principles of echography (section 3.1.2), and their extension to 2-D and 3-D imaging
(section 3.1.3) are presented.

3.1.1 Ultrasound generation and propagation

Ultrasounds are elastic waves like the sound that we can hear by our ear. The only
difference is the frequency f ( f = ω/2π , where ω is the angular velocity in radi-
ans per second), which is higher than the audibility threshold (20kHz). Assuming a
non-viscous medium, ultrasound waves are longitudinal and described by the wave
equation as given in Eq. (3.1), where v is the propagation velocity, z is the propaga-
tion axis, and A is the amplitude, i.e., the displacement of the medium particles with
respect to the equilibrium position [87, 88].

∂2A

∂z2
= 1

v2

∂2A

∂t2
(3.1)
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A solution of Eq. (3.1) is given as in Eq. (3.2), where i = √−1, A0 is the maxi-
mum displacement, and k is the wave number, which is equal to 2πλ−1 (λ is the wave
length and is equal to 2πvω−1).

A(t, z) = A0e
ik(vt−z) (3.2)

Usually the real part of the wave equation solution Re[A]= A0 cos(k (vt− z)) is
used for the wave representation.

The ultrasound propagation velocity v is 343ms−1 in air and 1480ms−1 in water
at 20◦C1. It is equal to

√
Bρ−1, where ρ is the density of the medium (kg ·m−3) and

B is the bulk modulus, which is measured in Pascal (1Pa = 1kg ·m−1 · s−2) and is
the measure of the stiffness of the material2. The energy carried by the acoustic wave
is defined by its intensity I , which represents the power across an unitary surface
(Watt ·m−2). It is given as in Eq. (3.3), where Z is acoustic impedance, which for
a planar wave equals P/ Ȧ = ρv (P is the ultrasound pressure and Ȧ the oscillation
velocity) [61, 87].

I = 1

2
Z (2π f A)2 (3.3)

The physical principle of echography is the reflection of the ultrasound waves at the
discontinuities of a material (medium). The discontinuity is described in terms of
acoustic impedance3 Z . In Table (3.4), sound velocity and acoustic impedance for
several biological tissues are listed [42].

Biological Material Sound Velocity Acoustic Impedance
Air 343 ms−1 394.35 Rayls
Blood 1580 1.67 MRayls
Bone 2240± 8% 3.89± 8%
Brain 1470± 4% 1.52
Fat 1450 1.38
Kidney 1560 1.62
Liver 1550 1.64
Muscle 1580 1.70
Soft Tissue (average) 1540 1.63

(3.4)

1The velocity of the sound in the soft biological tissues is about 1540m/s. It is similar to the velocity
in water, since soft biological tissues are made by 80% of water.

2The bulk modulus is the reciprocal of the compressibility, and can be expressed as B = ∆P ·
(∆V/V )−1, where ∆V is the decrease of volume, V is the original volume, and ∆P is the applied
pressure variation. It can be also proven that B = γ P for a gas in adiabatic condition (i.e., PV γ =
constant), where γ is the adiabatic polytropic exponent and P is the static pressure [61, 89].

3The acoustic impedance is usually expressed in Rayls: 1Rayl = 1kg ·m−2 · s−1 = 1N · s ·m−3.
For water Z = 1.49MRayls.
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In the simplest case, when the incidence angle is equal to zero, the amplitude Ar
of the reflected wave and the amplitude At of the transmitted wave (see Fig. (3.5))
are related to the amplitude Ai of the incident4 wave as given in Eq. (3.5) [47,87,91].

Figure 3.1: Reflection and transmission of the acoustic wave across a dis-
continuity.

Ar
Ai

=
(
Z2− Z1
Z2+ Z1

)
(3.5)

At
Ai

=
(

2Z2
Z2+ Z1

)
Across a discontinuity the wave frequency remains the same. Therefore, an ex-

pression for reflection and transmission in terms of the intensity I can be derived
combining Eq. (3.3) and Eq. (3.5) as given in Eq. (3.6).

Ir
Ii

=
(
Ar
Ai

)2
=
(
Z2− Z1
Z2+ Z1

)2
(3.6)

It
Ii

= Z1
Z2

(
At
Ai

)2
= Z1
Z2

(
2Z2

Z2+ Z1

)2
= 4Z1Z2

(Z2+ Z1)
2

4In general, when the incidence angle is not equal to zero, Eq. (3.5) is given as follows:

Ar = Ai

(
Z2 cosαi − Z1 cosαr
Z2 cosαi + Z1 cosαr

)
At = Ai

(
2Z2 cosαi

Z2 cosαi + Z1 cosαr

)
where αi and αr are the incidence and refraction angles respectively [49, 90]. This result is obtained
by imposing the continuity of the displacement amplitude and the pressure amplitude (P = 2π f AZ )
across the interface as given below [91].

Ai cosαi + Ar cosαi = At cosαr
Ai Z1− Ar Z1 = At Z2
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The amplitude P of the pressure wave is given as P = √
2Z I (i.e., P = 2π f AZ )

[47, 87, 91], therefore, Eq. (3.5) does not change if the displacement amplitudes Ai ,
Ar , and At are replaced by the respective pressure amplitudes5. Consequence of the
energy conservation principle is that Ii = Ir + It .

In general the biological materials inside the body have similar composition,
hence the reflections are very limited. Special cases are the lungs, which contain
air, and the bones. For instance, when the ultrasound beam reaches the lungs coming
from a soft tissue (e.g., muscle), Ir

Ii
= 0.9990 and It

Ii
= 0.0010. More than 99.9% of

the incident energy is reflected.
An important aspect for a complete characterization of sound propagation is the

acoustic attenuation. The intensity of the sound wave decays with an exponential law
as given in Eq. (3.7), where I0 is the initial intensity, z is the covered distance, and a
is the absorption coefficient in Neper per cm [42,47, 92] 6.

I = I0e
−2az (3.7)

The coefficient a depends on the material as well as on the frequency of the
ultrasound wave. It increases as the frequency increases. The relation between a and
the frequency for soft tissues is nearly linear7 and a represented in cm−1 ·MHz−1.
Values of a for different biological tissues are listed in Table (3.8) [47, 92].

TISSUE adB [dB · cm−1 ·MHz−1]
brain 0.53
heart 0.66
kidney 0.79
liver 0.43
muscle 0.55
blood 0.18
fat 0.6
skull 20

(3.8)

5Notice that the amplitude of the molecules displacement A is π/2 delayed with respect to the
pressure wave P [91]. In fact, P = B(∂A/∂z) and P = Z Ȧ, where z is the sound-propagation axis, B
the bulk modulus, and Z is the acoustic impedance (Z = ρv) [61].

6Since the intensity is related to the squared value of the pressure amplitude, for pressure Eq. (3.7)
becomes P = P0e

−az .
7Actually, the absorbtion coefficient for soft tissues is a linear function of f b, where b is slightly

larger than 1 (b � 1.15) and f ∈ [0.1MHz,50MHz] [87]. This nearly linear relation, which is in
general valid for soft tissues, is not valid for contrast agents, which show a more complex behavior.
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Very often the attenuation a is measured in dB ·cm−1 ·MHz−1, as a consequence
Eq. (3.7) is given as in Eq. (3.9) [92]8.

I = I0e
−0.23adB x f (3.9)

The ultrasound generator is referred to as transducer. It is made of piezoelec-
tric crystals, which can be natural (e.g., quartz) or synthetic (e.g., Lead-Zirconate-
Titanate , Poly-Vinylidene-Di-Fluoride, Lead-Magnesium-Niobate, and Barium Lead
Titanate or Zirconate), and are placed on the tip of a probe. The crystals are the vi-
brating material that converts electrical energy into acoustic energy and vice versa.
Each crystal makes an approximately linear conversion between mechanical pressure
and electrical voltage. The input voltage amplitude usually ranges from 10 to 400
Volts, depending on the output ultrasound intensity that is required.

Figure 3.2: Crystal excited by an alternate voltage. The vibration of the
crystal goes along the axis that is perpendicular to the electrode
plaques (thickness-mode vibration).

The resonance frequency and the size of the crystal are related as given in Eq. (3.10)
[20, 42, 47], with vcrystal equal to the propagation velocity of sound in the crystal
(about 4000ms−1) and L equal to the distance between the crystal surfaces, i.e., be-
tween the electrodes9 (see Fig. (3.2)).

fres = vcrystal

2L
(3.10)

8It is common to find a expressed in dB, i.e., adB = 20log10 (P/P0). As a consequence P =
P010

− adB f z
20 = P0e

− ln(10)
adB f z
20 = P0e

−0.115adB f z . The conversion is then a = ln10
20 adB = 0.115 ·

adB .
9Formula (3.10) derives from the fact that the resonance is given by the coupling of the electrical

input and the acoustic waves within the crystal, which have to cover the distance 2L (reflection from the
opposite surface, see Fig. (3.2)) at the same frequency of the electrical input. Therefore, for a typical
resonance frequency of 5MHz, the crystal width must be L = 4 ·10−4m.
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The acoustic adaptation between crystals and skin tissue in order to transmit the
maximum bandwidth with the minimum loss [20, 47] is made by a matching layer
designed with a thickness of λ/4 (λ is the length of the acoustic wave in the layer at
the resonance frequency fres of the transducer) and an acoustic impedance between
those of the crystal (Zcrystal) and the external medium (the acoustic impedance Zskin
of the human skin)10. Without matching layers, there would be a direct interface
between transducer (Zcrystal � 30MRayls for a Lead-Zirconate-Titanate crystal [47])
and skin (Zskin � 1,63MRayls, see Table (3.4)), with a consequent reflection, as
derived by Eq. (3.6), of 80% of the energy. The ideal acoustic impedance of the
matching layer can be determined by several different methods.

Figure 3.3: Scheme of an ultrasound transducer.

For a given frequency (narrow-band) and optimized matching-layer thickness
(equal to λ/4) the transmission coefficient equals 1 if Zmatch is equal to

√
Zcrystal Zskin

[90]11. In general the transmission should be maximized for a wide bandwidth, and

10Such layers are basically made by aluminium powder in an epoxy resin: the higher is the concen-
tration of aluminium the higher is the acoustic impedance. However, new generations of transducers
aim to avoid the matching layer. They are made by polyvinylidene fluoride PVF2 with an acoustic
impedance close to that of tissues [47].
11For a fixed frequency and a quarter-wave matching layer L = λ/4, the intensity transmission coef-

ficient is given as follows,
It
I0

= 4Z1Z2

Z2
(
1+ Z1Z2

Z2

)2
where Z1, Z, and Z2 are the acoustic impedance of the first medium, the matching layer, and the second
medium respectively. It is evident that for Z = √

Z1Z2 the transmission coefficient is unitary.
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therefore the complexity of the matching-layer design increases. Using the Krimholts
Leedom Matthaei model (KLM model 1970 [93]) an ideal acoustic impedance of the

matching layer is found to be equal to 3

√
Zcrystal Z2skin [94]. Other formulae such as

Zmatch = log−1 ((log(Zcrystal)+ log (Zskin)
)
/2
)
are also adopted [47], and the use of

more layers is considered too.
The transducer can be used in continuous or pulsed Mode. In the pulsed Mode

it is necessary to have a short pulse and then to stop the crystal vibrations as soon
as the electric signal is turned off. To obtain this result the internal surface of the
crystals is covered by a thick damping layer (epoxy). Fig. (3.3) shows the structure
of a mono-crystal transducer [87, 95].

Remark The acoustic intensity that is generated by an ultrasound transducer that
produces a typical (high) pressure peak of 1MPa is 33W · cm−2. It is interesting to
compare it to the pain-threshold for the human ear (frequency equal to 1kHz), which
is only 30Pa and 10−4W · cm−2 [61]. There are limitations imposed for each anal-
ysis by the United States Department of Health and Human Services and the Center
for Devices and Radiological Heath (CDRH) of the Food and Drug Administration
(FDA). They have been estimated according to studies developed by the American In-
stitute of Ultrasound in Medicine (AIUM), and the latest thresholds were delivered in
1997 [96]. For the most of the tests the threshold is defined by an intensity (spatial-
peak and pulse-average) ISPP A equal to 190Wcm−2 and Mechanical Index12 (MI)
equal to 1.9, meaning that the pressure amplitude is about 3MPa (for the MI assume
a frequency of about 3MHz). A pressure of 10MPa (I = 3300W · cm−2) could even
induce cavitation in mammals [92].

3.1.2 Echography principles: A-Mode and M-Mode analysis

Echography, as the name suggests, is based on the analysis of the echoes: if a pulse
(usually five ultrasonic cycles) is transmitted inside the body and the resulting echoes
(reflections) received back, then it is possible to derive the position of the intercepted
discontinuities that generated the echoes. In fact, since the propagation velocity of
ultrasonic waves through biological tissues is known (see section 3.1.1), the delays
of the received echoes can be interpreted in terms of distance. The distance d be-
tween the transducer and the discontinuity is given as in Eq. (3.11), where v is the

12It is defined [96] as the peak rarefactional (therefore negative) pressure (expressed in MPa) when a
uniform material is scanned, divided by the square root of the center frequency of the pulse expressed
in MHz (usually between 2.5 and 5 MHz). The material is assumed to have an attenuation adB of
0.3dB · cm−1 · MHz−1 (a � 0.035cm−1 · MHz−1). It is the standard attenuation used to give an
estimation of the in situ value of the acoustic pressure (or intensity). This estimated value is referred to
as derated.
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ultrasound velocity in tissue and T is the time interval between the transmission and
the reception of the pulse. An example is given in Fig. (3.4).

d = vT

2
(3.11)

Figure 3.4: Distance estimation by means of echography. The discontinuity
is represented by a plastic layer inserted in a water-filled basin.
Notice that the border of the basin represents a discontinuity too,
and that the resulting echo is more attenuated due to the longer
path.

This is the basic Mode of an ultrasound scanner, and it is referred to as A-Mode
(“A” stands for “Amplitude”). A pulse is transmitted and received back in order to re-
construct the discontinuities along a line. The received signal is demodulated in order
to suppress the frequency (usually between 2.5MHz and 5MHz for clinical applica-
tions) of the ultrasound pulse. This operation is typically implemented by a mixer
and a low-pass filter. Before demodulation the signal is referred to as RF (Radio Fre-
quency) signal while after demodulation it is referred to as A-line (Amplitude line).
The A-line that is obtained after demodulation represents the amplitude of the ultra-
sound echoes as a function of the ultrasound depth, i.e., the profile of the acoustic
impedance discontinuities.

Remark According to Eq. (3.7), the received energy reduces exponentially as a
function of the distance. In order to compensate this effect, the ultrasound scanner
applies a logarithmic non-linearity (function of the time delay of the received reflec-
tion) to the received signal, which is referred to as Time Gain Compensation [47].
The RF signal is already compensated.
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A very important characteristic of the system is the resolution. Two different
resolutions can be distinguished: the axial resolution and the lateral resolution [49,
87].

The axial resolution is the ability to distinguish two different discontinuities along
the direction of propagation of the ultrasound beam. It depends on the time-length
of the ultrasonic pulse. In fact, as from Eq. (3.11), the system can distinguish two
discontinuities at the minimum distance of vT/2, with T equal to the time length of
the pulse13.

More complicated is the determination of the lateral resolution. It is a measure
or the narrowness of the ultrasound beam. The aim of an ultrasound system is to
receive information (i.e., reflections) coming from the z axis without spreading the
beam along the X and Y axis (refer to Fig. (3.5), where the beam is spread with
an angle equal to θ0). This allows resolving the XY plane with higher accuracy
when the transducer is moved (translated) to reconstruct either 2D- or 3D-images
(section 3.1.3).

The surface of a transducer can be assumed to consist of point-sources transmit-
ting spherical waves. Thus, to calculate the acoustic field, according to the Huygens’
principle [61,91], all the point-source contributions should be summed to each other.
This results in two effects, which, in case of a flat circular transducer of radius r (see
Fig. (3.5)), are modelled as follows [20, 42, 49, 87, 90, 97].

1. The pressure of the sound-wave along the z axis goes through a series of max-
ima and minima in the near field (Fresnel zone), it reaches a wide maximum
at the focal distance d = r2/λ, which represents the transition distance to the
far field (Fraunhofer zone), and then it slowly decreases. The mathematical
formulation is given as in Eq. (3.12), where Pz is the maximum pressure wave
amplitude along the z axis and P0 is the reference pressure on the crystal sur-
face.

Pz
P0

= 2
∣∣∣sin(π

λ

√
r2+ z2− z

)∣∣∣ (3.12)

2. There is a beam pattern of the pressure that is a function of the angle θ respect
to the z axis. In the near field it can be solved only numerically, but in the
far field the Fraunhofer approximation (plane waves) allows describing14 the

13Common values are 5 cycles at 5MHz, resulting with a resolution distance d � 0.8mm.
14In the far field the formulation of the beam pattern, i.e., the distribution of the pressure (amplitude)

of the sound wave, is given as follows:

P(θ) ∝
2J1

(
2πr
λ sin(θ)

)
2πr
λ sin(θ)

where J1 is the Bessel function of the first order [49, 87, 90, 98].
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Figure 3.5: Model of the acoustic field of a circular transducer. Notice the
peak pressure along the Z-axis at distance z = r2/λ (focal dis-
tance, transition between the Fresnel and the Fraunhofer field)
and the last pressure minimum (zero) at distance z = r2/2λ. The
beam section diameter at the focal distance is half of the trans-
ducer diameter [47].

pressure as a function of θ . Hence, it is possible to derive a parameter to
measure the spread of the mail lobe. It is the angle θ0 where the main lobe is
constricted (i.e., the first null of the main lobe). Its formulation is given as in
Eq. (3.13).

θ0 = arcsin

(
0.61λ

r

)
(3.13)

Two points covered by the main lobe cannot be distinguished, therefore, θ0
describes the angular lateral resolution of the system, which decreases as the
distance of the discontinuities from the transducer increases.

The best compromise to avoid both the Fresnel fluctuations and the decrease of
resolution in the far field is to have the Z discontinuity at the focal distance d = r 2/λ,
which is also the distance where the main lobe is self focused. In fact, the analysis
of the near-field beam shows that for distance r2/λ from the transducer the width of
the main lobe is reduced to its minimum value, which is half of the transducer width
(see Fig. (3.5)).
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A reduction of the lateral resolution is also determined by the side lobes of the
transducer. In fact, apart from the main lobe, there are lateral lobes whose intensity
is normally 60dB to 100dB lower than that of the main lobe [47, 87]. As a con-
sequence, not only the reflections from the main lobe, but also those from the side
lobes are detected. These noise components, especially evident in B-Mode analysis
(see section 3.1.3), are referred to as side lobe artifacts.

Although the beam pattern depends on the shape of the transducer, in every trans-
ducer the lateral resolution is proportional to both frequency of the ultrasound beam
and size of the crystal (see Eq. (3.13)).

Acoustic lenses are often used to improve the lateral resolution. They are placed
on the tip of the transducer. Acoustic lenses are designed like the optical ones, ac-
cording to the Snell Law and the Equal Acoustic Path Rule15.

In conclusion, to reconstruct the information on one line the following steps are
performed.

• A pulse (few cycles at the resonance frequency of the transducer) is transmitted
along one line.

• All the echoes coming from that line are detected (in practice, the echoes from
all the directions that are covered by the main and the side beam lobes are
detected).

• The time-gain compensation is applied (the resulting signal is the RF signal).

• The RF-line is demodulated to obtain the amplitude depth information (A-line,
see Fig. (3.4)).

As by means of the A-Mode echography it is possible to detect the discontinu-
ities along one line, the same procedure can be repeated continuously by generating
multiple pulses in sequence. This technique is referred to as M-Mode analysis (“M”
stands for “Motion”), and it plots a function of time that describes the motion of
the discontinuities along one direction16. While the A-Mode analysis is mainly used
in ophthalmology and encephalology, the M-Mode analysis is mainly used to detect
moving parts, such as the cardiac chambers and valves.

15The acoustic path is given by
∑ di

vi
, where di is the distance covered in the material with propaga-

tion speed vi . The Snell Low in acoustics is formulated as follows:

sin(αinc) ·v2 = sin
(
αre f r

) ·v1
where v1 and v2 are the propagation speed in the first and in the second material and αinc and αre f r
are the incidence and refraction angles respectively [47, 91].
16As for the echo-Doppler (see section 2.1.4), it is important to take care of the pulse repetition

frequency (PRF). From the Nyquist theorem, the PRF must be at least twice as high as the frequency
components of the tissue movements. However, in the velocity range of biological tissues, the PRF does
not represent a limitation.
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3.1.3 Image reconstruction: B-Mode and 3-D analysis

The same principles that are used to reconstruct the distribution of the acoustic impedance
discontinuities along one line (A-line) can be used to obtain the discontinuity dis-
tribution on one plane [20, 99]. In fact, a plane can be spanned by translating the
transducer in one direction and taking measurements for a series of lines. The volt-
age of the multiple A-lines (dynamic range) is mapped into gray-level (usually 256
gray levels coded by 8 bits) by using a logarithmic compression, or, more in gen-
eral, a non-linear compression. The result is a bi-dimensional image that represents
a slice of the body. The bi-dimensional application of echography is referred to as
B-Mode, where “B” stands for “Brightness”. The first simple B-Mode implementa-
tion was based on the mechanical translation of the transducer, but more advanced
developments followed very rapidly.

Figure 3.6: Structures of the array transducers commercially available. In
(a) it is shown a linear sequential array, in (b) a curvilinear
array, in (c) a linear phased array, in (d) a 1.5-D array, which
is phased along the X axis and focused along the Y axis, and
finally in (e) it is shown a 2-D phased array for tri-dimensional
imaging.
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Apart from the mechanical solutions, the latest technologies are based on elec-
tronic array processing. It is implemented in the array transducers and allows the
focalization and steering of the ultrasound beam to different directions (beam steer-
ing). Each crystal can be activated separately with a specific delay. By choosing the
appropriate delays it is possible either to focus the ultrasound beam (like an optical
lens) or change (steer) its orientation to span a wide angle. The crystals are “phased”
along one direction. A complete description of the array beam-forming configura-
tions that are commercially available is given below (see Fig. (3.6)).

• Linear sequential arrays (a in Fig. (3.6)): they usually have 512 elements and
a sub-aperture of 128 elements is selected to operate at a given time. The
scanning lines are perpendicular to the face of the transducer. The acoustic
beam is focused, but not steered. The advantage is the higher resolution with
respect to a steered beam, while the disadvantage is that the field view is limited
to the width of the transducer, which consequently must be large.

• Curvilinear arrays (b in Fig. (3.6)): they operate in the same manner as the
linear sequential arrays, but the field view opens with an angle depending on
the convex shape.

• Linear phased arrays (c in Fig. (3.6)): they usually have 128 elements and they
use the beam steering technology. The main advantage consist of a field view
that is much wider than the transducer width. As a result, these transducers
are ideal for cardiac transthoracic imaging, where the transducer must scan
through a small window between the ribs (see also Fig. (3.13)).

• 1.5-D arrays (d in Fig. (3.6)): 1.5-Dimensional means that the array is bi-
dimensional, but the second dimension (elevation plane) contains only few el-
ements (3 to 9), which are used to improve the resolution along the second
dimension (elevation focus).

• 2-D phased arrays (e in Fig. (3.6)): this is the last step towards tri-dimensional
imaging. A bi-dimensional array allows to steer the beam in two directions,
leading to the reconstruction of a tri-dimensional view. However, if a typical
array of 128 elements is considered, a complete 2-D array would require 16384
channels, which are impossible to handle (consider, for instance, how the probe
cable would look like). The solution, nowadays, is represented by the sparse
matrix technology. A 50× 50 element design can be reduced to about 500
channels.

Recent applications of electronic array controls also involve the implementation
of specific filters to improve the detection of second harmonic reflections [100]. This
allows a better detection of ultrasound contrast agents (see section 3.3).
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Tri-dimensional echography represents the latest development of the echographic
technology and different implementations are available. It is a step similar to the
passage from A-Mode to B-Mode echography. Once two dimensions are solved, it is
sufficient to repeat the measurement along the third dimension to obtain a 3-D view.
Apart from the 3-D beam steering, which is controlled electronically, mechanical
solutions are also available. The most common are shown in Fig. (3.7).

Figure 3.7: Mechanical solutions for 3-D echo-scanning.

The computation required by an electronic 3-D ultrasound scanner is heavy and
real time processing is barely realized. For instance, a modern 3-D scanner such as
the Philips Sonos 7500, allows an “almost real time” 3-D processing, so that one
volume is reconstructed each four cardiac cycles. Faster solutions are represented by
mechanical rotational 3-D transducers, which allow real time applications [101].

3-D Echography, as well as MRI or CAT, can be used to measure the volumes
of the cardiac chambers and to estimate EF, SV, and CO. It is reported a correla-
tion coefficient greater than 0.8 between the EF measurements made by CAT and by
3D echography [102], a correlation coefficient equal to 0.99 between 3-D echogra-
phy and radionuclide angiography [103], and a correlation coefficient around 0.95
between the volume estimation made by 3-D echography and MRI [69,71,72]. How-
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ever, despite the high correlation coefficients, bias and standard deviations are in
general very large [67].

Apart from the image formation, another critical issue, especially for 3-D images,
is the off-line detection of the cardiac structures for the automatic analysis and inter-
pretation of the acquired data. As discussed in section 2.2, the volume measurements
require the endocardiac-wall detection, which is often difficult to automate and needs
manual intervention of expertises.

3.2 Ultrasound contrast agents

Ultrasound Contrast Agents (UCA) are made of a solution of micro-bubbles (diam-
eter from 1µm to 10µm). They are smaller than red blood cells (diameter from
6µm to 8µm) and, therefore, suitable for intravenous injection. As for all tracers,
ultrasound contrast agents have to be inert and non-toxic. Commercial agents can
be distinguished in three generations [104]. The first generation includes the early
air micro-bubbles that were not stabilized by a shell, such as Echovist� (Scher-
ing, Berlin, Germany), which was approved in Europe in the early 90’s. Second
generation agents were introduced in the mid 90’s and included the first encapsuled
air bubbles, such as Albunex� (Molecolar Biosystems, San Diego, CA, USA) and
Levovist� (Schering), whose shell was made of albumin and galactose respectively.

The latest third generation micro-bubbles for ultrasound detection are composed
of air, SF6, C3F8, or other perfluorocarbons encapsuled in a phospholipid, albumin,
or polymer shell [105–108]. The optimized use of a shell creates a strain that op-
poses to the Laplace pressure and stabilizes bubbles against dissolution17. Third-
generation agents are SonoVue� (Bracco, Milan, Italy), Optison� (Amersham Gen-
eral Electric), Definity� (Du Pont Pharmaceuticals, USA), Quantison� (Quadrant
Andaris, Nottingham, UK), Sonazoid� (Nycomed, Roskilde, Denmark), AI-700�
(Acusphere, Watertown, MA, USA), EchoGen� (Sonus Pharmaceuticals, Bothell,
WA, USA), Imavist� (Alliance Pharmaceuticals, Village Main, South Africa), Bi-
sphere (Point Biomedical, San Carlos, CA, USA) and Sonavist� (Schering). Once
injected into blood, the effect of the bubbles (see Fig. (3.8)) is a significant increase
of the ultrasonic energy backscatter, which at first analysis could be simply explained
by the reflection across the blood-air acoustic-impedance discontinuity.

Due to the natural oscillations (contraction-expansion) of the bubbles when in-
vested by a pressure input, the interaction between contrast agents and ultrasound is
a nonlinear process, which adds several harmonics to the backscattered ultrasound.

17According to the Laplace law, the pressure inside a gas sphere, referred to as Laplace pressure,
equals 2σ/R, where σ and R are the surface tension (N ·m−1) and the sphere radius respectively [109].
The high internal pressure due to small radius is held by the strain that is provided by the shell.
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Figure 3.8: TTE using SonoVue� contrast agent. The contrast is recogniz-
able in the left side of the heart.

Figure 3.9: Schematic drawing of an oscillating bubble in an ultrasound
pressure field.

The oscillations of a single bubble are commonly characterized by the model de-
veloped by Rayleigh and Plesset to describe the motion of vibrating spheres [109,
110]. The bubble is represented as a sphere of radius R and its motion is consid-
ered spherically symmetric as shown in Fig. (3.9). Therefore, bubble oscillations are
described by radius variations. The surrounding fluid is assumed to be Newtonian
(incompressible with constant viscosity).
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The equation that is commonly used to describe the relation between velocity and
pressure in a fluid-dynamic system is the Navier-Stokes equation [111]. If the steady
external forces (e.g., the gravitational force) are not considered, the Navier-Stokes
equation can be written as given in Eq. (3.14), where ρ and µ f are the density and
the viscosity of the fluid respectively [112].

ρ

(
∂v

∂t
+�v2

2

)
+�×�×v −µ f �2v = −�P (3.14)

When the fluid (Newtonian fluid) vorticity is negligible, the velocity field is ir-
rotational (�× v = 0) and the viscosity term µ f �2v in Eq. (3.14) disappears [111].
Moreover, we can define a potential Ψ so that v = �Ψ . As a result, Eq. (3.14) is
simplified as given in Eq. (3.15) [109].

ρ�
(

∂Ψ

∂t
+ v2

2
+ P

)
= 0 (3.15)

Due to the radial symmetry hypothesis, the fluid velocity field has a radial sym-
metry and can be described as a function v(r, t) of the radial distance r from the
bubble center and the time t . As a direct consequence, v(R, t) = Ṙ, where R is the
bubble radius. Moreover, Ψ = 0 for r → ∞. Another condition concerns the pres-
sure field for r → ∞, which is defined as P∞ and equals the sum of two contributes:
the hydrostatic pressure P0 and the ultrasound driving pressure P(t). Using these
conditions, the integration of Eq. (3.15) over r allows defining the relation between
the pressure field P(r, t) and the bubble radius R(t), which for r = R is given as in
Eq. (3.16).

P(R)− P∞ = ρRR̈+ 3

2
ρ Ṙ2 (3.16)

P(R) can be related to the internal pressure Pi of the gas bubble as given in
Eq. (3.17), where Pv is the vapor pressure and σ is the surface tension coefficient
(N ·m−1) [110].

P(R) = Pi − 2σ

R
+ Pv (3.17)

R0 is the bubble radius at the equilibrium condition. Since the gas expansion and
contraction can be considered isothermal and adiabatic respectively, the whole pro-
cess is described by a polytropic transformation18, whose exponent19 k ranges from 1
(isothermal) to γ (adiabatic). The value of γ for a noble gas (e.g., Argon and Xenon)

18A polytropic transformation is characterized by a constant value of the product P(V −b)k , where
b is the Van der Waals volume, i.e., the volume of the gas molecules [89].
19It can be calculated as

ck−cp
ck−cv , where ck is the molar heat of the transformation, cp is the molar heat

for constant pressure, and cv is the molar heat for constant volume [91].
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is 5/3. Therefore, assuming the gas to obey a polytropic law for real gas with con-
stant polytropic exponent k, Pi is given as in Eq. (3.18), where h is the Van der Waals
radius20 [113].

Pi =
(
P0+ Pv + 2σ

R0

)(
R30 −h3

R3−h3

)k
(3.18)

For a driving pressure that does not cause bubble collapse (MI< 0.3), R � h and
the Van der Waals radius may be neglected (ideal-gas rather than real-gas assump-
tion). As a result, Eq. (3.18) is simplified as given in Eq. (3.19).

Pi =
(
P0+ Pv + 2σ

R0

)(
R0
R

)3k
(3.19)

Combining Eq. (3.18) and Eq. (3.17) with Eq. (3.16), we obtain Eq. (3.20), which
describes the non-linear motion of an ideal bubble and is referred to as Rayleight-
Plesset equation [109, 110].

ρRR̈+ 3

2
ρ Ṙ2 =

(
2σ

R0
+ P0− Pv

)[(
R0
R

)3k
−1

]
− P(t) (3.20)

A modified expression of the Rayleigh-Plesset equation also adds to the second
member of Eq. (3.20) the term 4µ f Ṙ R−1, which defines the pressure drop that is
caused by the viscous damping of the bubble-fluid system and is related to the fluid
viscosity µ f (see [109] pp. 189-190 and [114] pp. 68-70). The resulting equation
is given as in Eq. (3.21). It is referred to as the modified Rayleigh-Plesset equation,
which is the result of the work of Noltingk, Neppiras, and Poritsky [115, 116].

ρRR̈+ 3

2
ρ Ṙ2 =

(
2σ

R0
+ P0− Pv

)[(
R0
R

)3k
−1

]
+ 4µ f Ṙ

R
− P(t) (3.21)

As already mentioned, modern contrast agents (second and third generation)
are made of encapsuled bubbles, therefore, the shell properties must be included
in the bubble motion equation. Starting from the Rayleigh-Plesset equation, sev-
eral authors have made modifications and added different terms according to dif-
ferent shell characterizations. The major contributions were proposed by de Jong
(1993) [110], Church (1995) [117, 118] (see also [114] pp. 106-108), Frinking-de
Jong (1998) [104], and Hoff (2000) [114, 119, 120].

Also other models have been derived to remove some of the assumptions of the
Rayleigh-Plesset equation. They are based on the Herring (1941) and Gilmore (1952)
equations [121,122], which consider the enthalpy energy and a compressible medium

20The radius of a sphere that has the same volume of all the gas molecules in the bubble.
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(non Newtonian) in order to give a better prediction of cavitation and large oscilla-
tions [109, 123, 124]. Based on these equations, Flynn (1975) developed a model
that also included the thermal effects inside the bubble [125]. Still based on the
Herring equation, the Trilling (1952) and the Keller-Kolodner (1952) models were
derived [114]. The Trilling model was then extended to a population of bubbles by
Chin and Burns (1997) [126], while the Keller-Kolodner model was first modified
by Keller-Miksis (1980) [127] to introduce the driving pressure field and then modi-
fied by Prosperetti (1988) [128]. Another model - still based on a modified Herring
equation - was also introduced by Morgan and Hallen (2000) [129].

A complete overview of all the proposed bubble dynamics models is beyond the
purpose of this study. The agent that we used for the validation the indicator dilution
methods that are proposed in this study is SonoVue�. This agent is well described
by the model proposed by de Jong in 1993 [130], therefore, we focus on this model
[110].

With respect to Eq. (3.21), the model does not consider only the damping due
to the fluid viscosity µ f , but also other contributes related to re-radiation and heat
conduction, together with the contributes to pressure due to the shell-properties. The
pressure that is related to the presence of a shell is mainly caused by the shell vis-
cous damping and elasticity. After collecting all these terms together, the resulting
equation is given as in Eq. (3.22).

ρRR̈+ 3

2
ρ Ṙ2 =

(
2σ

R0
+ P0− Pv

)[(
R0
R

)3k
−1

]
− Sp

(
1

R0
− 1

R

)
+

−2π f δtρRṘ− P (t) (3.22)

The pressure due to the shell elasticity is defined by the shell elasticity parameter
Sp, which is derived from the application of the Hooke law21 under hypothesis of
homogeneous, thin, and perfectly elastic shell (see [131], pp. 152-155, equation
5.10). The first order approximation of the Hooke law for a thin shell is given as in
Eq. (3.23) [110], where E is the Young modulus, υ is the Poisson ratio, and Ts is the
shell thickness (the thin shell hypothesis allows the approximation Ts � R) [131].

R− R0 = (∆P)R20

(
1−υ

2ETs

)
(3.23)

Therefore, due to the shell elasticity (stiffness), there is a restoring force that,
after a further approximation for small radius variations, corresponds to the pressure

21According to the Hook law, F = −k∆R, where F is the applied force, k is the elasticity constant,
and ∆R is the radius variation.
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difference ∆P = Sp(R−1 − R−1
0 ) as given in Eq. (3.22). As a result, Sp is measured

in N ·m−1 and given as in Eq. (3.24) [110].

Sp = ETs
(1−υ)

(3.24)

In this model the shell thickness is assumed to be constant during oscillations22.
δt in Eq. (3.22) is the total damping factor23 and is the sum of four terms as given

in Eq. (3.25).
δt = δrad + δvis + δth + δ f (3.25)

δrad represents the re-radiation damping 24, δvis the fluid viscosity damping (al-
ready included in Eq. (3.21), see also [109], pp. 189-190), δth the damping due to
thermal losses, and δ f the damping due to the shell friction25. The expression for the
four dimensionless terms, usually considered at the natural frequency fn (a derivation
of fn for a linearized system is given in Eq. (3.28)) [109], is given below, where µs

is the shell viscosity, v is the ultrasound velocity in the medium, and the expression
for B( f, R) was derived by Anderson and Medwin26 [132–134].

22Other models, such as the Hoff model, assume a constant shell volume and, therefore, the shell
thickness becomes a function of the bubble radius R.
23In a linear system of the second order, such as a mass-spring damped system, the damping factor

(non-dimensional) is defined as the inverse of the quality factor and equals b/2π fnm, where b is the
damping coefficient, fn is the natural frequency of the system, and m is the mass. For high quality
factors, the resonance frequency is close to the natural frequency (without damping) of the system and
the oscillations have a large amplitude.
24Similar to a plane wave (see Eq. (3.2)), a spherical wave generated by a bubble can be expressed as

P(r) = P(R0)(R0/r)e
ik(vt−r), where P(r) is the pressure at distance r from the origin, P(R0) is the

pressure at the bubble surface, and vk = ω [109]. The linear Navier-Stokes equation for irrotational flow
at the bubble surface is given as ρ(dv/dt) = ρε̈ = −� P . After inserting the spherical pressure P(r),
the Navier-Stokes equation at the bubble surface becomes ρε̈ = −[∂P(r)/∂r ]R0 = (P(R0)/R0)(1+
ikR0). As a result, the pressure amplitude at the bubble surface for kR0 � 1 is given as below.
P(R0) = ρR0

1−ikR0
1+(kR0)2

iωε̇ � ωρR0ε̇(kR0+ i)

The force at the bubble surface equals−4πR20 P(R0) = −4πR30ωρε̇(kR0+ i). Therefore, the acous-

tic impedance is given as Zrad = 4πR30ωρ(kR0 + i) = (Re[Zrad ]+ iωm), where m = 4πρR30 is the

effective mass of the oscillating bubble and Re[Zrad ]= 4πR40ρkω is the radiation resistance or damp-
ing b. Since the damping factor δ is equal to b/mω, it follows that δ = kR0 = (2π/λ)R0 = (2π fn/v)R0.
25The derivation of δ f for a fully linearized thin shell model is reported in [114], pp. 76-78.
26The same expression for B( f, R) as derived in [132] (pp. 296-299), which is referred to as d/b and

given below, can be also found in [109] (equation 3.186), where it is referred to as dth .
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δrad = 2π fn
v

R0

δvis = 2µ f

π fnρR20

δth = B( f, R0)
f 2n
f 2

δ f = 6µsTs
π fnρR30

All the damping factors are function of the frequency f and the bubble radius
R0. For instance, as from the term f 2n / f 2, the thermal damping is only effective for
intermediate frequencies (near the natural frequency fn). In fact, for high frequencies
the process is adiabatic (no heat transfer due to the short period of the oscillations)
and the polytropic exponent k equals γ , while for low frequencies the process is
isothermal (the oscillations are sufficiently slow to allow the heat transfer to keep
the bubble temperature constant) and the polytropic exponent k equals 1. Instead,
for intermediate frequencies, like for instance around the natural frequency fn , the
temperature oscillates in the bubble and causes pressure variations that are out of
phase with respect to the driving pressure.

The bubble dynamic model is used to study and predict the response of the bubble
system to a pressure input (driving pressure). The major interest is the definition of a
frequency range that maximizes the bubble oscillations and, therefore, the backscat-
tered ultrasound signal. In order to derive the frequency response of the bubble, the
system is analyzed for small oscillations and a Taylor first order approximation of
Eq. (3.22) is considered. The resulting system is a typical second order linear sys-
tem (like a damped mass-spring system, see [114], page 109) as given in Eq. (3.26),
where ε represents the small radius oscillation R− R0 for a driving pressure P(t)
(see Fig. (3.9)).

mε̈ +bε̇ + sε = −4πR20P(t)

m = 4πρR30

b = 2π f mδt

s = 4πR0
[
3k
(
P0− Pv + 2σ

R0

)
− 2σ

R0
+ pv + 2Sp

R0

]
(3.26)

ID is referred to as thermal diffusion length and is a function of the gas thermal conductivity Kg , the gas

thermal capacity at constant pressure Cp , and the gas density ρg (see also [114]). This representation
for the thermal damping was initially introduced by Devin (1959) and later developed by Eller (1970)
and Prosperetti (1977).



56 Echography and ultrasound contrast agents

The frequency response |ε( f )|/|P( f )| of the system is given as in Eq. (3.27)
[109, 114].

|ε( f )|
|P( f )| = 1

R0ρ
√(

f 2n − f 2
)2+ ( f fnδt)

2
(3.27)

fn is the natural frequency of the bubble without damping and is given as in
Eq. (3.28).

fn = 1

2π

√
s

m
= 1

2π
√

ρR0

√
3k

(
P0− Pv + 2σ

R0

)
− 2σ

R0
+ Pv + 2Sp

R0
(3.28)

Based on Eq. (3.27) and Eq. (3.28), the peak frequency response (resonance fre-
quency) of the damped bubble is given as in Eq. (3.29).

f0 = fn

√
1−
(

δt

2

)2
(3.29)

As a consequence, the maximum oscillation, when for instance the viscous damp-
ing is included, is generated for a driving frequency f0 given as in Eq. (3.30) (see
[109], pp. 305-306).

f0 = 1

2π
√

ρR0

√
3k

(
P0− Pv + 2σ

R0

)
− 2σ

R0
+ Pv + 2Sp

R0
− 4µ2

f

ρR20
(3.30)

As already mentioned, the de Jong model, as well as all the models in literature,
are based on a series of assumptions that are not realistic. In particular, in a real
clinical application there is a large number of bubbles that may interact with each
other with multiple thermal and radiation energy exchanges. The interaction forces
are not considered in the presented model. Moreover, as recently observed by de Jong
and Versluis using an ultra-fast camera, the assumption of spherical symmetry of the
bubble oscillations is not realistic [135, 136]. Bubbles oscillate using several differ-
ent geometrical modes, so that more sophisticated models are needed. Also a large
variability of the maximum bubble expansion for same driving pressures and same
bubble original diameters is recognizable. This phenomenon is complex to explain
and might be the result of different elastic properties of the bubble shell [137]. In this
case, the elasticity parameter Sp could be substituted with a statistical distribution.

However, especially for small pressure (low MI) and low concentrations (neg-
ligible interaction between bubbles), the available models can already predict with
sufficient accuracy the interaction between ultrasound and bubbles and are widely
adopted for contrast quantification [30, 98, 104,130,138–141]. In particular, contrast
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quantification involves the estimation of the agent echogenecity27, which is com-
monly determined by the measurement of the ultrasound backscatter.

The ultrasound backscatter is defined by the backscatter coefficient β, which is
the scattering cross-section (cm2) per unit volume (cm3) and per scattering angle
(sr). The scattering cross-section of a bubble is the ratio between the power scattered
in all directions and the incident acoustic intensity. The scattered power equals the
energy that is dissipated because of the radiation damping. In general, if the damping
coefficient equals b, then the force F that is necessary to compensate for it equals ε̇b.
For ε(t) = ε0 cos(2π f t), the average power W (energy per cycle) that is dissipated is
given as in Eq. (3.31), where T = 1/ f .

W = 1

T

T∫
0

(F · ε̇(t))dt = 1

T

T∫
0

(ε̇(t)b · ε̇(t))dt = 1

2
4π2 f 2ε20b (3.31)

The re-radiation average power is given as in Eq. (3.31) for radiation damping
coefficient brad = δradmω = 4πρR40ω

2/v. Combining Eq. (3.31) with Eq. (3.27), the
scattering cross-section Σ for a single bubble, which is defined as the ratio between
average scattered power and ultrasound intensity, is a function of the radius R of
the bubble and the ultrasound frequency f as given in Eq. (3.32), where W is the
average scattered power, I0 is the amplitude of the incident intensity (I0 = P2

0 /2Z ),
Z = Re[Zrad]= 8π2 f R40ρk, and fn is the natural frequency of the bubble [109,110,
114, 120, 130, 142].

Σ (R0, f ) = W

I0
=

1
24π

2 f 2ε20b
P20
2Z

= 4πR20[(
fn(R0)
f

)2−1

]2
+ δt (R0, f )

(3.32)

The term δt (R0, f ) summarizes all the damping factors. Since the adopted model
represents a second order system, the scattering cross-section shows a resonance fre-
quency where the system gives the strongest response in terms of scattered power. For
f � fn �⇒ Σ (R0, f ) � 4πR20, which is the physical cross-section, i.e., the bubble
surface [130, 139]. The resonance frequency is inversely proportional to the radius
R0 of the bubbles at the equilibrium. Therefore, the total scattering cross-section
Σtot( f ) depends on the normalized radius distribution n (R) of the bubbles as given
in Eq. (3.33) [143, 144].

Σtot ( f ) =
Rmax∫
Rmin

n (R)Σ (R, f )dR (3.33)

27Echogenecity is the ability of the agent to generate echoes when interacting with ultrasound waves.
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n (R) is a characteristic of the specific contrast. Assuming an isotropic scattering
and a low concentration of bubbles, the backscatter coefficient β (expressed in cm−1·
sr−1) is given as in Eq. (3.34), where ρn is the number of bubbles per unit volume
(concentration) [143].

β ( f ) = ρnΣtot ( f )

4π
(3.34)

Therefore, the backscatter coefficient is a linear function of the UCA concentra-
tion [6, 30, 98, 140, 143–145] and the backscattered acoustic intensity I that is mea-
sured by the transducer can be approximated as in Eq. (3.35), where I0 is the acoustic
intensity insonating the contrast, dV = dz · d A is the volume of insonated contrast,
and z is the distance between dV and the transducer28.

I = dV

z2
β ( f ) I0 = dV

z2
ρnΣtot ( f )

4π
I0 (3.35)

Possible experimental solutions for the estimation of β( f ) are based on the mea-
surement of the ratio between the acoustic intensity coming from the contrast and
from an acoustic mirror (100% reflecting layer) when contrast is absent [98,104,110].
The result of the measurement is the ratio I/I0 for different frequencies, which, after
taking into account the geometry of the system, allows the estimation of the spec-
trum β( f ). When β( f ) is averaged over the frequency spectrum of the ultrasound
transducer it is referred to as Integrated Backscatter Index (IBI) [146].

The interaction between ultrasound and UCA is not only described by the backscat-
ter coefficient, but also by the attenuation coefficient, which represents the loss of
acoustic pressure in Neper per cm. It occurs along the distance that the ultrasound
beam covers through the contrast solution, and it is related to the three main factors
that are listed below.

• Micro-bubble decay (ad) due to both chemical decay (dissolution) and disper-
sion through the capillaries.

• Diffusion or scattering of the acoustic energy in multiple directions (as).

• Viscous and thermal damping of the ultrasound waves (aδ) as in Eq. (3.25).

It is assumed that the total increase of attenuation ∆a is given as in Eq. (3.36),
where ad is proportional to the chemical constituents of the contrast while (as +aδ)

is proportional to the concentration of the contrast.

∆a = ad +as +aδ (3.36)

28An homogeneous scattering with a spherical symmetry of the backscattered pressure is assumed
(see [134] pp. 357-361).
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The attenuation that is expressed by the term as +aδ is referred to as extinction.
It is possible to define an extinction cross section Σe as the sum of the backscatter
cross section Σ (see Eq. (3.32)) and the absorption cross section Σa . Similarly to
Eq. (3.32), the absorption cross section is defined as the ratio between the loss of
power and the incident intensity Wloss/I . Power can be always expressed as a linear
function of the damping coefficient b as given in Eq. (3.31). Since b = 2πδm fn by
definition, the ratio between the loss of power caused by a specific damping and the
acoustic scattering Wloss/W equals the ratio between the respective damping factors.
This concept can be formulated as given in Eq. (3.37) (see [114] pp. 25-28 and [132]
pp. 302-304).

Σa =
(

δvis + δth + δ f

δrad

)
Σ (3.37)

Since Σe = Σa +Σ , Σe is also given as in Eq. (3.38).

Σe =
(

δt

δrad

)
Σ (3.38)

Figure 3.10: Schematic passage of an ultrasound beam of intensity I
through a volume sample dV of bubbles. The volume length
is dz while the cross-section area is d A. The intensity loss
through the sample equals d I .

The extinction coefficient ae = as + aδ can be derived from the extinction cross
section. In fact, from the definition of extinction cross section, the differential loss of
power dWloss can be written as given in Eq. (3.39), where dV = d A ·dz is a volume
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sample as shown in Fig. (3.10). The total extinction cross-section Σetot is derived
from Σe as given in Eq. (3.33) for the scattering cross-section Σtot.

dWloss = I

⎛⎝ρn

Rmax∫
Rmin

n (R)Σe d R

⎞⎠dV = IρnΣetot d Adz (3.39)

Therefore, the loss of intensity d I is given as in the differential Eq. (3.40), whose
integral is given as in Eq. (3.41).

d I = I

⎛⎝ρn

Rmax∫
Rmin

n (R)Σed R

⎞⎠dz (3.40)

I (z) = I0e
−ρnΣetot z (3.41)

As a consequence, the extinction coefficient ae is given as in Eq. (3.42), where
the factor 2 in the exponent derives from the fact that the attenuation coefficient is
defined in terms of pressure loss, which is related to the intensity by a quadratic
function (P = √

2Z I ).

ae = ρn

2
Σetot =

ρn

2

Rmax∫
Rmin

n (R)Σed R (3.42)

For shell encapsuled bubbles the first term ad in Eq. (3.36) can be neglected if
the measurement is executed in a short time (i.e., few minutes). As a result, the
attenuation is linearly proportional to the concentration of the contrast ρn , as also
shown in Eq. (3.34) for the backscatter coefficient β [5,98,110,143,144,147]. If only
the extinction is considered, ae in Eq. (3.42) corresponds to the attenuation coefficient
a introduced in Eq. (3.7).

Because of the linear relation between total attenuation and contrast concentra-
tion, some authors have considered the opportunity of measuring the attenuation-time
curve rather than the backscatter-time curve for the estimation of fluid-dynamic pa-
rameters (see section 4.1) [5].

The same set up that is used for backscatter measurements can be also employed
for attenuation measurements [98]. A clear description can be also found in [114]
(pp. 89-94).

According to Eq. (3.7), the received echo intensity can be rewritten as given in
Eq. (3.43), where β is the backscatter coefficient in the examined organ (without
contrast), a is the attenuation coefficient of tissue, z0 is the depth of the organ that
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is opacified, and ∆z is the depth of the insonated volume sample dV within the
opacified organ.

I = dV

z2
βe−4a(z0+∆z) I0 (3.43)

The return distance that is covered by ultrasound (after reflection) is taken into
account by the factor 4 at the exponent (instead of 2). Assuming∆β to be the increase
of backscatter proportional to the concentration of the contrast, combining Eq. (3.36)
with Eq. (3.43), the intensity I that is received from distance z0 +∆z is given as in
Eq. (3.44).

I = dV

z2
(β +∆β) I0e

−4a(z0+∆z)−4∆a∆z (3.44)

This is the model that is usually adopted to interpret the backscattered intensity.
In fact, both ∆β and ∆a are linearly proportional to the contrast concentration. A
good measure of the efficacy of contrast agents in terms of ultrasound detection,
which considers both backscattering and attenuation, is represented by the Scattering-
To-Attenuation Ratio (STAR) Σtot

Σetot
= δrad

δt
= 2π∆β

∆ae
[104, 143, 144].

Remark Cost is a potential issue for ultrasound contrast agents. At an approxi-
mate cost of $100 per dose, ultrasound contrast agents currently cost about as much
as the ultrasound imaging examination itself. However, the amount of contrast in one
vial is sufficient for many indicator dilution inspections (up to 100), so that a single
clinical inspection becomes economically inexpensive.

The contrast adopted for the present study is SonoVue� (previously known as
BR1, trademark of Bracco Diagnostic, Milan). Its clinical use in the Netherlands
was allowed in the beginning of 2002 29. SonoVue� is a sulfurhexafluoride bubble
encapsuled in a mono-layer phosholipidic shell. The diameter varies from 0.7µm to
10µm, with an average value equal to 2.5µm [130, 141, 148, 149]. SF6 is a large
molecule (molecular weight equal to 146) with low solubility in water (Ostwald sol-
ubility30 equal to 0.0054). As a consequence, the molecule diffusion is low and the
contrast very stable. In addition, the presence of a shell creates a strain that compen-
sates the Laplace pressure and stabilizes bubbles against dissolution. For instance,
the video-intensity decay due to bubble dissolution is 0.2dB/min [150,151], which is
not significant within an IDC measurement procedure that lasts for about 1 minute.
However, once the SonoVue� solution is reconstructed, it should be used within six
to eight hours. The SonoVue� solution is isotonic and its viscosity µ f is similar to
that of blood [149].

29Since the middle of 2004 the clinical use of SonoVue� has been temporary restricted to non-
echocardiographic applications by the European Agency for the Evaluation of Medicinal Products
(EMEA) due to some allergic reactions in heart failure patients.
30Volume of gas dissolved per unit volume of solvent.
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The echogenecity of SonoVue�was studied using fundamental harmonic echog-
raphy with a frequency range from 1MHz to 7MHz, representative of the clinical
use [130]. The results prove that the larger the bubbles the higher the backscattered
power, and the lower the resonance frequency f0. As a result, the bubble count
is a poor indicator of the echogenecity of SonoVue�. Much better is the volume
measurement, which is highly related with the amount of larger bubbles. As a conse-
quence, the best contrast response (large oscillations) to a driving alternate pressure
is obtained for a frequency of about 3MHz, which is the resonance frequency of the
largest bubbles [130].

This echogenecity study for SonoVue� was performed by fitting (least square
fit) the backscatter cross-section model in Eq. (3.32) to experimental measurements.
It was also concluded [130] that the constant thickness assumption of the de Jong
model shows a better interpolation of the experimental measurements with respect to
the constant shell volume assumption of other models such as, for instance, the Hoff
model [114].

Micro-bubbles are not only used as contrast agents for echographic inspections.
An important application field regards the delivery of drugs and genes [152]. Bub-
bles are loaded with either a drug or a gene. A targeting ligand in the bubble shell
makes the injected bubbles settle and attach to specific sites [153]. Once the bubble
is located in the right site, i.e., where the drug is intended to be delivered, a high
MI ultrasound beam makes the bubbles collaps and release the drug. This technique
allows both targeting the delivery and increasing the drug uptake. It is considered as
a real asset for gene and radionuclide therapies [154].

3.3 Echographic modes for contrast detection

Specific imaging methods have been developed in order to preferentially detect the
echoes from the agent while suppressing those from other structures, such as tissue.
Tissue structures are basically linear (i.e., described by linear equations) while the
contrast micro-bubbles, as from Eq. (3.22), are non-linear. Therefore, all the methods
for contrast detection exploit the bubble non-linear behavior. Applications are mainly
in echo-Doppler and B-Mode analysis. Our interest concerns the second application.

The non-linear behavior of the bubbles is mainly evident for driving pressures
above 50kPa [139]. Above this threshold, the backscatter cross-section Σ differs
from the physical value of 2πR20 according to Eq. (3.32). However, to avoid the bub-
ble destruction the driving pressure should be smaller than 800kPa [155]. Therefore,
the MI (mechanical index), which is the standard indicator of the exposure of bubbles
to ultrasound, should be bounded between 0.02 and 0.35 (for a central frequency of
5MHz).
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The nonlinear echoes produced by ultrasound contrast agents presents an oppor-
tunity to distinguish the echoes due to contrast from those due to tissue [107,108,139,
156–158]. These methods, referred to as harmonic imaging, are now widely avail-
able in ultrasound scanners. The objective of these harmonic imaging techniques
is to maximize the Contrast-to-Tissue Ratio (CTR) [159–161]. In Harmonic Mode,
the system transmits at one frequency (resonance frequency of the transducer), but
is tuned to receive echoes preferentially at a different frequency. Therefore, the fre-
quency transfer function of the transducer must be broad band.

Figure 3.11: Frequency response spectrum of SonoVue� following excita-
tion in fundamental harmonic.

As shown in Fig. (3.11), the frequencies that are commonly used for contrast de-
tection are distinguished in sub-harmonic (about half of the fundamental harmonic),
ultra-harmonic (between the fundamental and the second harmonic), second har-
monic, and higher harmonics [107, 108, 162, 163]. For these frequencies, the signal
due to contrast shows larger amplitudes with respect to that due to tissue. In fact,
due to the linear response, tissue echoes contain approximately the same frequency
components as the pressure waves that are generated by the transducer (fundamental
harmonic). Fig. (3.11) shows the frequency spectrum of the power backscatter of
SonoVue� [107].

The implementation of filters in order to detect specific frequencies is not the only
solution to enhance the bubble detection pulses. Alternative techniques involve the
modulation of the amplitude and the phase of the transmitted ultrasound. They are
referred to as power modulation imaging and phase modulation imaging respectively
(see Fig. (3.12)). The most common phase modulation technique is referred to as
pulse inversion. Two pulses p1(t) and p2(t) = −p1(t) are transmitted in sequence
into tissue. The sum of the received echoes results in the cancellation of the echoes
from linear structures (i.e., tissues). Instead, the echoes from non-linear reflectors
(i.e., from the bubbles) do not cancel, resulting in a selective detection of the contrast
agents that is especially evident in the even harmonics.
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Figure 3.12: Examples of phase modulation (pulse inversion) and power
modulation pulse sequences.

The implementation of an amplitude modulation (power modulation) allows de-
tecting the bubble non-linear response in fundamental harmonic. This technique is
economically more convenient, since it does not require the employment of expen-
sive broad-band transducers. Although the best response in terms of high harmonics
is obtained for middle MI, usually modulation imaging techniques are used together
with low MI (MI≤ 0.3) to avoid bubble disruption. Typical implementations use the
transmission of three adjacent ultrasound pulses p(t). The amplitude of the central
pulse is twice as that of the side pulses. The receiver sums the reflections of the side
pulses and subtracts the reflection of the central pulse. Due to the bubble non-linear
response, 2h(p) �= h(2p), where h(.) represents the bubble response to the pressure
pulses. Therefore, this technique allows detecting the non-linear response of bubbles
while deleting the linear response of tissue structures. Several implementations also
combine Power Modulation and Pulse Inversion (PMPI) with a number of different
pulse sequence schemes.

The non-linear oscillations of bubbles can be also exited by use of particular
pulses, different from the typical Gaussian pulses at fixed frequency. For instance,
the use of chirp pulses31 results in enhanced bubble responses and, therefore, it could
be used for contrast detection imaging [164].

31A pulse is referred to as a chirp pulse of the order n, if and only if, its instantaneous frequency f (t)
increases and/or decreases linearly within the pulse, and the first time derivative of the instantaneous
frequency is a step function with the number of time intervals (where it is constant) equal to n.
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Despite the use of a low MI, the bubble destruction rate is sometimes significant.
A reduction of this effect can be obtained by use of Intermittent Harmonic Imag-
ing (IHI) [156, 157]. An image is reconstructed every n cardiac cycles (n ≥ 1) in
triggered mode32, so that the number of pressure pulses is reduced.

The use of high MI (MI > 1) produces a high-rate bubble disruption [139, 155,
165]. Some techniques use the bubble disruption as a contrast imaging technique
[166,167]. Two pulses are transmitted in fast sequence. The first one is reflected and
destroys the bubble. After the bubble destruction, the second pulse is not reflected.
By taking the difference of the reflections from the two pulses it is easy to distinguish
bubbles from tissue, unless the fast motion of tissue is confused with the bubble
destruction (clutter noise). More sophisticated implementations of the same concepts
are possible and are referred to as release-burst imaging [107, 158, 167].

The destruction of micro-bubbles followed by a low MI detection phase is also
used as a specific technique for the measurement of the myocardial flow. After per-
fusion, the contrast in the myocardium is destroyed by a high MI ultrasound burst.
The following replenishment curve is detected by recording the acoustic or video
intensity-versus-time curves in defined regions of interest in the myocardium. The
interpolation of these curves by a specific model33 allows the quantification of the
myocardial flow [85,86].

The improved sensitivity of the ultrasound system for contrast detection has also
an advantage in terms of resolution. The ultrasound frequency must be limited due
to the attenuation, which increases together with the frequency (see Eq. (3.9)). Im-
proved detection modes allow increasing the ultrasound frequency, resulting in higher
axial and lateral resolution of the system (see section 3.1.2 and Eq. (3.13)).

3.4 Echocardiography

The focus of this section is on classical B-Mode echography, which shows a “slice”
of the body. The object of this study is the human heart. When echography is applied
to the heart it is referred to as echocardiography.

Until the mid 80’s only the transthoracic echocardiography (TTE) was used for
cardiac investigations. The name derives from the fact that the ultrasound transducer
is positioned on the chest (thorax) of the patient. From that position, several windows
can be found between the ribs in order to obtain different views (slices) of the heart

32The scanner is triggered with the electrocardiogram, i.e., the scanner timing is controlled by the
cardiac electrical activity.
33The time-concentration curve C(t) during replenishment is modelled by the following exponential

curve
C(t) = A

(
1− e−βt

)
,

where A and β are the model parameters and t is the time. The flow is then proportional to Aβ.
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[46]. Fig. (3.13) shows the TTE windows together with the apical views, which are
used in this study.

Nowadays, also another technique is available [168]. Thanks to the latest tech-
nology, the ultrasound transducer could be miniaturized in order to be introduced
through the mouth into the esophagus or the stomach (see Fig. (3.14)). It is placed on
the tip of a catheter and its orientation can be controlled by an external hold, which
is referred to as proximal housing.

Figure 3.13: Trans-thoracic windows for echocardiography. On the right
the apical views are shown. The four chamber view (A) is par-
ticularly interesting. It allows the simultaneous insonation of
the four chambers, and, therefore, it is widely adopted in this
study.

Figure 3.14: Transesophageal echocardiography. Example of a four-
chamber view.
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Figure 3.15: Three examples of TEE views. View 1 shows the aorta (Ao),
the superior vena cava (SVC), and the pulmonary artery (PA),
as seen from the upper esophagus. View 2 shows the section of
both ventricles at the mid-papillary muscle level cross-section,
as seen from the stomach. View 3 shows the four-chamber view,
as seen from the mid-part of the esophagus.

Since the heart is analyzed from the esophagus, this technique is known as trans-
esophageal echocardiography (TEE) and has a big advantage over the classical TTE.
In fact, using TTE the ultrasound beam has to pass through the ribs and the lungs, re-
sulting in lower quality images. Furthermore, added difficulties arise from the female
breast and the fat tissue when dealing with obese patients. Instead, the esophagus is
directly behind the heart, separated only by a thin layer of tissue. That is the reason
why the TEE produces higher Signal-to-Noise Ratio (SNR) images, which are also
suitable for contrast detection [169]. On the other hand, a disadvantage is that the
method is unpleasant for the patient, since the transducer has to be inserted through
the mouth. However, for applications during surgery or in intensive care unit, there
are no disadvantages and TEE is becoming widely used in the clinical practice.

Fig. (3.15) shows some of the TEE views. The third view in Fig. (3.15) allows
to observe simultaneously all the four cardiac chambers (it is referred to as four-
chamber view). As for the TTE investigation, it is an interesting view and allows
the simultaneous measurement of echo-contrast dilution curves from all the cardiac
chambers.
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Chapter 4

Ultrasound contrast agent dilution curve
modelling

Carpe viam, et suspectum perfice munus (Virgilius).

The interaction between ultrasound and UCA allows detecting the passage of
the contrast in any site of the circulatory system. If a Region of Interest (ROI) is
fixed and the signal due to the contrast passage recorded versus time, an acoustic (or
video) intensity curve can be derived. The first section of this chapter (section 4.1)
regards the calibration process and all the issues concerning the relation between
contrast concentration and detected signals. The ultimate goal is the derivation of
an IDC. Once an IDC is derived, the following sections provide with an overview of
the models that are employed for the IDC interpretation (section 4.2) and a detailed
derivation of two specific models: the Local Density Random Walk model (LDRW
model, section 4.2.3) and the First Passage Time model (FPT model, section 4.2.2).
The LDRW model is used in the rest of this study for the interpolation of measured
UCA IDCs while the FPT model is compared to the LDRWmodel in the next chapter
to explain some interesting concepts regarding volume measurements.

4.1 Calibration of acoustic and video intensity curves

In the previous chapter (section 3.2) the interaction between UCA and acoustic in-
tensity is characterized for a small driving pressure (low MI) and contrast concen-
trations. The bubble is approximated by a linear second order mechanical system
and a frequency response is derived (Eq. (3.26)). Within the reported representation,
the relationship between contrast concentration and acoustic backscatter coefficient
is linear (Eq. (3.34)). Among the assumptions that are made for the UCA charac-
terization, very important is that regarding the interaction forces between neighbor
bubbles, which are neglected. This assumption is realistic only for low contrast con-
centrations. As a consequence, our study focuses on a low UCA concentration range
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using a low MI (MI≤ 0.3). With this hypothesis, not only the backscatter coefficient,
but also the attenuation coefficient is linearly related to the contrast concentration
(Eq. (3.41) and Eq. (3.42)).

Figure 4.1: Measurement set-up for acoustic intensity calibration.

In this study, the measurements of acoustic and video intensity for the IDC mea-
surement are performed in a ROI. Therefore, the equations derived in section 3.2
must be averaged over a bi-dimensional ROI. Using Eq. (3.44), the measurement at
distance z is replaced by the measurement of the average intensity Iav over a rectangu-
lar ROI of size ∆z×∆x , which is shown in Fig. (4.1). With reference to Fig. (4.1),
neglecting the attenuation of the medium a and the geometric intensity decay z−2,
which can be compensated by the ultrasound scanner [134, 140, 145], Eq. (3.44) be-
comes as given in Eq. (4.1).

Iav = 1
∆z∆x

z1+∆z∫
z1

x1+∆x∫
x1

(β +∆β) I0e−4(∆a)z dzdx =

= I0(β+∆β)e−4(∆a)(z1−z0)

4∆z∆a

(
1− e−4∆z∆a) (4.1)

In the low concentration range and for ∆z sufficiently small, the product ∆a ·∆z
is very small. As a consequence, a first order approximation of Eq. (4.1) is applicable
and the result is given as in Eq. (4.2).

Iav = I0 (β +∆β)e−4(∆a)(z1−z0) (4.2)
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This first order approximation is adopted to model the attenuation in the present
study.

A specific experiment was made in order to test the linearity of the relation be-
tween backscattered acoustic intensity and contrast concentration. A Sonos 5500
ultrasound scanner (Philips Medical Systems) was used to generate B-mode videos.
The scanner was set in Tissue Contrast Enhancement mode at 25 Frames Per Second
(FPS) and the MI fixed to 0.1. Series of three adjacent ultrasound pulses of four cy-
cles at 1.9MHz are transmitted. The amplitude of the central pulse is twice that of
the side pulses. The receiver sums the reflections of the side pulses and subtracts the
reflection of the central pulse. This technique, which is a specific implementation of
the power modulation mode (see section 3.3), allows the enhancement of the bubble
non-linear response and the cancellation of the tissue linear response.

Figure 4.2: Acoustic intensity calibration curve for the power modulation
mode using a Sonos 5500 ultrasound scanner. The backscattered
acoustic intensity is measured by software Q-Lab for SonoVue�
concentrations going from 0.5mg/L to 25mg/L.

The adopted contrast for UCA IDC measurements was SonoVue� which is de-
livered in a septum-sealed vial containing 25mg of lyophilized product in SF6 gas.
The suspension of gas micro-bubbles is reconstructed before use by introducing 5ml
of saline (0.9% NaCl solution) through the vial septum, followed by 30 seconds of
hand shaking. After that, the product is ready for further dilutions. Different dilutions
of SonoVue� in 100ml of saline (concentrations varying from 0.5mg/L to 25mg/L)
were prepared in small rubber bags and submerged in a water-filled basin for a good
acoustic impedance matching as shown in Fig. (4.1). The basin water was degassed
to avoid the formation of scattering bubbles. The ultrasound transducer was sepa-
rated from water by a thin polyurethane window in the basin wall. The basin was
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entirely covered by an acoustic absorber layer made of sponges to avoid reverbera-
tion noise. The distance between the transducer and the contrast bag was fixed and
equal to 8cm. The acoustic intensity was measured by software Q-Lab� (Philips)
for acoustic quantification.

Fig. (4.2) shows the detected acoustic intensity using the described harmonic set-
ting. Above 12.5mg/L the attenuation effect becomes evident. Below this threshold,
the correlation coefficient between concentration and acoustic intensity is 0.99 and
the relation is well approximated by a linear function. Therefore, the contrast con-
centration is linearly related to the measured acoustic intensity for low concentrations
(≤ 12.5mg/L). For equal transmitted intensity, the use of specific contrast modes al-
lows reducing the injected dose of contrast with a consequent improvement of the
linear relation between contrast concentration and backscattered acoustic intensity.

Figure 4.3: In figure A, a 250mg/L SonoVue� dilution results in a half moon
shape (shadowing effect) of the detected backscattered intensity
(power-modulation scanner setting) due to attenuation. In figure
B, the detection of a 12.5mg/L SonoVue� dilution is shown.

For very concentrated dilutions, the first layer of contrast that is intercepted by
the ultrasound beam attenuates a large fraction of the incoming energy and produces
a strong shadow effect to the rest of the contrast, which remains undetected [5, 170].
Typical evidence of the shadowing is the resulting half moon shape of the detected
contrast dilution. An example for a 250mg/L concentration of SonoVue� is shown in
Fig. (4.3) (the scanner setting is the same as for the power modulation calibration in
Fig. (4.2)). Due to this effect, some authors have shaped the ROI as a half (or quarter)
moon in order to minimize the influence of shadowing on contrast quantification
[171]. The employment of different ROIs, from circular to a moon quarter, have been
also considered.

Several ultrasound scanners do not provide with any access to the RF signal or
permit any B-mode acoustic intensity quantification. However, also the B-mode
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video output, which is available in every scanner, can be a suitable signal for con-
trast quantification. The resulting technique is referred to as videodensitometry and
consists in the measurement of the average gray level that the contrast passage pro-
duces in the video output of the ultrasound scanner. Despite the linear relation be-
tween acoustic intensity and contrast concentration, for the videodensitometric IDC
measurement also the relationship beween gray levels and acoustic intensity must be
established.

The ultrasound transducer performs a linear conversion between ultrasound pres-
sure and electrical voltage (see section 3.1.1). After demodulation, the voltage is
quantized into gray-levels by means of a non-linear function, which is usually imple-
mented as a logarithmic-like compression [145, 172]. In addition, the gamma com-
pensation1 and the effects of the machine setting (gain and time-gain compensation)
should also be considered. For low contrast concentrations and a well adjusted time-
gain compensation T (z), the attenuation effect can be neglected [145]. Moreover,
in modern scanners, the gamma compensation can be always set as linear. If G(z)
is the gray level for depth z, G0 is the gain, and L(.) is the non linear compression
function, then the backscattered intensity that is given in Eq. (3.35) for a volume dV
at distance z from the transducer is transformed into gray levels as given in Eq. (4.3).

G(r) = G0L

⎛⎝√(dV )T (z)e−4(∆a)z

z2
(β +∆β)I0

⎞⎠≈ G0L
(√

(dV )(β +∆β)I0
)
(4.3)

The squared root is due to the fact that the gray levels are quantized from the volt-
age signal, which is linearly related to the ultrasound pressure. The contrast concen-
tration is assumed to be homogeneous and the resulting attenuation∆a is considered
as constant. Eq. (4.3) does not depend on the distance z, so that the average value
over an extended ROI is also given by the same equation.

If L(.) performs a logarithmic compression, the transformation in Eq. (4.3) can
be modelled as given in Eq. (4.4), where a0, a1, and a2 are the parameters of the
model, and G (ρn) is the mean gray-level as a function of the UCA concentration ρn .

G (ρn) = a0 log(a1ρn +a2) (4.4)

The term (a1ρn +a2) represents the linear relation between backscattered inten-
sity and UCA concentration as given by the term (dV )(∆β +β)I0 in Eq. (4.3). ∆β is
a linear function of the contrast concentration, so that (dV )∆β I0 = a1ρn , where ρn is
the contrast concentration in the volume sample dV at distance z from the transducer.

1Since monitors introduce a nonlinear relation between luminance (l) and input voltage (v), which
is referred to as gamma and can be expressed as l = vγ (typically γ = 2.2), usually a compensation for
this effect is implemented (gamma compensation).
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The coefficient a2 is equal to (dV )β I0 and a0 represents three factors: the squared re-
lation between voltage and ultrasound intensity, the gain G0, and the unknown basis
of the logarithmic compression2.

The model in Eq. (4.4) is used to fit the experimental calibration data. The mea-
surements shown in Fig. (4.2) were converted by software Q-Lab� into digital video
files (AVI-DivX format3) as shown in Fig. (4.4). The measured video intensities were
interpolated by the model in Eq. (4.4) using a Levenberg-Marquardt fitting algorithm
(see section 5.1). The resulting calibration fit, which is shown in Fig. (4.5), is very
accurate with a determination coefficient (ρ2, correlation coefficient squared) equal
to 0.997.

Figure 4.4: Video B-mode output for different SonoVue� concentrations go-
ing from 0 to 25 mg/L. The scanner (Philips Sonos 5500) was set
in power modulation at 1.9MHz with MI = 0.1. Gain and time
gain compensation were fixed to 90 and 80 respectively.

An alternative set-up for fundamental harmonic (transmission and reception are
tuned to the same frequency) measurements was also tested for video calibration.
100ml rubber bags were filled with different dilutions of SonoVue� in saline. The
external TTE ultrasound transducer was replaced by a TEE ultrasound transducer,
which was submerged into water to improve the acoustic impedance matching. The
B-mode video output of the ultrasound scanner was interfaced to a personal computer
by a National Instrument frame grabber (1407 PCI) and analyzed for all the different
dilutions. The mean gray-level measurements were fitted by the model in Eq. (4.4).
The scanner was set in fundamental harmonic at 5MHz and the MI was set to 0.3.

The model was tested with two different scanners to verify the machine inde-
pendency of the model. Fig. (4.6) shows the results as measured with a Philips
Sonos 4500 and Sonos 5500 ultrasound scanner. The determination coefficient ρ2

between the experimental data and the fitted model is 0.99 and 0.98 respectively.
Sometimes, due to the presence of air bubbles, it was difficult to establish the back-
ground mean gray-level and, therefore, the correct measurements for very low UCA
concentrations. Since the logarithmic fitting is very sensitive to low-concentration

2For an unknown logarithmic basis x , lgx (c) = 1
log(x) · log(c).

3Official site: http://www.divx.com/
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Figure 4.5: The same measurements as shown in Fig. (4.2) after conversion
(by software Q-Lab) into digital AVI video as shown in Fig. (4.4).
The model fit shows a determination coefficient equal to 0.997.

data, the application of the non-linear calibration in Eq. (4.4) for IDC measurements
is rather complicated.

Instead, it is interesting to notice that for low concentrations of SonoVue� (be-
low 5mg/L), the relation between UCA concentration and mean gray-level can be
approximated by a linear function G (ρn) = a0 +a1ρn with ρ2 � 0.95. The use of a
linear calibration, already introduced for early agents such as Albunex [1], is also sup-
ported by previous studies on the response of SonoVue� to Doppler signals [173].

The increased detection efficiency of harmonic modes, such the adopted power
modulation mode, makes the saturation due to video logarithmic compression already
significant for low concentrations (2.5mg/L). However, this high contrast sensitivity
can be exploited with a further reduction of the injected dose, so that the resulting
attenuation effects are totally negligible (see Fig. (4.2)). In general, harmonic mode
contrast detection is better employed for acoustic measurements, which show a wide
linear-calibration range.

A problem related to the proposed calibration procedure, which we like to refer to
as static calibration, is the destruction of the bubbles, which is evident even for very
low MI (MI = 0.1). The main issue is probably represented by the number frames
per second, which with the adopted scanner could not be decreased4 below 25Hz. As
a result, the bubbles intercepted by the plane of the ultrasound beam were rapidly
destroyed, and it was difficult to establish the correct value for the backscattered
intensity.

4The scanner uses automatically the maximum frequency (frames per second) for a given depth.
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Figure 4.6: The left graph shows the calibration fit for a Sonos 4500 scan-
ner in fundamental harmonic. The machine setting was MI =
0.3, FPS = 25, burst carrier frequency = 5MHz, gain = 44, time
gain = 50. The estimated parameters of the fitted model are
a0 = 83.1, a1 = 1.6, and a2 = 1.2. The determination coefficient
is 0.99.
The right graph shows the calibration fit for a Sonos 5500 scan-
ner in fundamental harmonic. The machine setting was MI =
0.3, FPS = 25, burst carrier frequency = 5MHz, gain = 44, time
gain = 50. The estimated parameters of the fitted model are
a0 = 90.5, a1 = 3.2, and a2 = 1.4. The determination coefficient
is 0.98.

In opposition to this static calibration, a dynamic calibration procedure has been
designed and implemented. Since the long insonification of the same bubbles leads
to their destruction, the basic principle of a dynamic calibration is to perform the gray
level measurements on moving bubbles, so that the insonificated bubbles are different
in time. A gray level intensity curve is measured after injection of a small bolus
of SonoVue� into a hydro-dynamic circuit as shown in Fig. (4.7). The unknown
concentration is determined by using a second calibrated indicator dilution system
in parallel. In particular, the SonoVue� bolus is injected together with a lithium
bolus and the lithium IDC is detected simultaneously with the ultrasound gray level
curve by a calibrated Lidco� system (Lidco Ltd, Cambridge, UK) for lithium CO
measurements (see the lithium dilution method in section 2.1.1) [37, 39, 40].

The flow in the circuit is generated by a centrifugal pump and accurately mea-
sured by an electromagnetic flowmeter (a calibrated Medtronic 550 bio-console cen-
trifugal pump, see also section 2.1.5). Therefore, the lithium dilution curve can be
adjusted (multiplied by a coefficient) in order satisfy Eq. (2.6) for the SonoVue�
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Figure 4.7: Scheme of the dynamic calibration set-up. A centrifugal pump
generates the flow into a tube where a SonoVue� and a lithium
bolus are simultaneously injected. The SonoVue� bolus is de-
tected in a water-filled basin by a submerged TEE transducer
while the lithium bolus is detected by a Lidco system.

injected dose. Following this procedure, the lithium curve is transformed into a real
SonoVue� IDC, based on the real contrast concentration ρn(t). Once the reference
curve ρn(t) is determined, it is transformed by the non-linear model in Eq. (4.4) and
fitted to the echographic videodensitometric curve G(t). A Levenberg-Marquardt fit-
ting algorithm is used. The result is the vector [a0,a1,a2] that minimizes the squared
error ε2 that is given as in Eq. (4.5), where t1 is any time before the contrast injection
and t2 is any time after the contrast clearance.

ε2 =
t2∫
t1

(G(t)−a0 log(a1ρn(t)+a2))
2 dt (4.5)

However, this calibration procedure, which allows solving the bubble destruction
problem of the static calibration, shows a different problem. In fact, the lithium
IDC is measured after the passage of lithium through a sampling tube that leads
to the sensor. The flow in the tube is generated by a peristaltic pump and is only
4ml/min. As a consequence, the diffusion process in the sampling tube influences
the shape of the lithium IDC. Especially when the primary flow generated by the
centrifugal pump is high, the difference between the lithium and the echographic



78 Ultrasound contrast agent dilution curve modelling

curves is significant, resulting in an unreliable calibration. Obviously, this additional
diffusion has no influence on the lithium system performance, which is focused on
flow measurements (real time CO measurements) and uses only the integral of the
IDC as given in Eq. (2.6).

Figure 4.8: Two fits of G(t) by the log-transformed lithium IDC for flow
equal to 0.9L/min (left) and 2.2L/min (right).

Fig. (4.8) shows the result of the fitting procedure for two IDCs with flow equal to
0.9L/min and 2.3L/min respectively. The lithium IDC, i.e., the reference curve ρn(t),
is interpolated by the LDRW model (see section 4.2.2) before the calibration fitting.
For higher primary flows, as evident from the duration time of the curve, ρn(t) is very
diffused and the fit of G(t) is erroneous. Fig. (4.9) shows the calibration curve (gray
level versus UCA concentration) as measured from the low flow curve in Fig. (4.8).
The scanner adopted for these measurement was a Sonos 4500 with a TEE probe in
fundamental harmonic. MI, gain, and time-gain compensation were set to 0.2, 90,
and 60 respectively. The injected doses of SonoVue� and lithium were 2.5mg and
1ml respectively.

Figure 4.9: Resulting calibration curve of a Sonos 4500 ultrasound scanner
based on the fit of the left IDC in Fig. (4.8).
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In conclusion of this section, several techniques are proposed to determine the
relation between UCA concentration, acoustic intensity, and displayed gray levels.
Interesting issues arise when performing the measurements, however, for low con-
trast concentrations, the relation between contrast concentration and both acoustic
and video intensity can be approximated by a linear function. While the acoustic in-
tensity is independent on the ultrasound scanner settings, the same is not applicable
to the video intensity (gray levels), which require the definition and use of a fixed and
calibrated setting.

4.2 Indicator dilution curve models

In chapter 2 the use of indicator dilution methods is shown as an effective approach
for the measurement of EF, CO, and blood volumes. All measurements that are based
on the dilution of an indicator bolus are based on the analysis of the IDC. Depending
on the adopted technique, the IDC is affected by several noise components, which
make the analysis complex and the resulting cardiac quantifications unreliable.

A noise source that is common to all the techniques is the recirculation of the
contrast, which causes the IDC down-slope to be covered by the rises due to the
recirculation (see Fig. (2.6)). Thus, it is necessary to adopt a model in order to fit the
first part of the curve and “guess” the lower part of the tail. The use of a model plays
also the function of a filter to suppress the rest of the noise components introduced
by the measurement system.

In particular, the noise sources for echographic IDC measurements are the bad
mixing of the contrast, the acoustic reverberation, the speckle, the backscatter os-
cillations due to pressure variations [174, 175], the bubble disruption due to ultra-
sound pressure (especially with highMI) [176], and the patient-movement and blood-
acceleration artifacts, resulting in very noisy IDCs.

The acoustic reverberation is usually caused by multiple reflection paths of ul-
trasounds, which are interpreted as reflections coming straight from the ultrasound
main-lobe beam (also the presence of side lobes may contribute to reverberation
noise, which in this case, as discussed in section 3.1.2, is refereed to as side lobe
artifacts). The speckle noise is due to the small scatterers that are dispersed in the
ultrasound field. As already clear from Eq. (3.29), hydrostatic pressure P0 variations
influence the bubble resonance frequency and, therefore, the backscattered intensity
for a given driving pressure [174]. Very interesting are the artifacts due to blood ac-
celeration, which produce an enhancement of the response of several harmonic-mode
contrast-detection techniques, which exploit the bubble non-linear behavior (see sec-
tion 3.3). More in detail, the enhancement is produced by the frequency shift∆ f that
is caused by the Doppler-effect (see section 2.1.4) due to blood velocity accelerations.
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An accurate characterization and filtering of all the noise components is very
complex, therefore, the employment of an IDC model is necessary for the signal
interpolation and interpretation. Several models have been used for the IDC fitting.
They are usually distinguished in two main groups as given below [10,14].

• The compartmental models.

• The statistical (distributed) models.

The first group represents the dilution process as a cascade of mixing chambers
[10, 14, 15, 30]. Each chamber is a linear system that is represented by an impulse
response. The second group describes the dilution process by means of statistical
distributions. Since the input is usually modelled as an impulse, also the statistical
distribution can be interpreted as the impulse response of a linear system. Therefore,
in practice, it does not make sense to distinguish into two groups and the focus should
turn to the function that describes the impulse response of the system.

In the following two sections an overview of the main indicator dilution models
and a detailed derivation of the Local Density Random Walk (LDRW) model and the
First Passage Time (FPT) model is given. The last two models are reported by several
authors as to give the best IDC fit in terms of mean square error [9–16]. Moreover,
they are related to the physics of the dispersion process, being solution of the diffusion
equation (see Appendix 3) [16]. For this reason, these two models are employed in
this study for the interpretation of ultrasound contrast agent IDCs.

4.2.1 Overview of the indicator dilution models

The first IDC fitting model was developed by Hamilton [8, 13, 32]. He noticed that
the IDC is mainly composed by a sharp rise followed by a slower descent, which
resembles an exponential function. Thus, he modelled the descent by an exponential
decay with time-constant τ as given in Eq. (4.6), where C (t) is the IDC (i.e., the
concentration-time curve) and t0 is the injection time.

C (t) = C (t0)e
− t−t0

τ (4.6)

This model, which represents the impulse response of a mono-compartment model,
also allows estimating the EF without ECG triggering5 (see Eq. (2.20) in section 2.2).
The estimation of the parameters of the model is very simple, since a ln-transformation
(ln stands for Neper logarithmic) of C (t) allows the use of a linear regression (see
Appendix A). However, a disadvantage is represented by the fact that the fitting is
performed along a short segment of the IDC down-slope before the rise given by the
recirculation of the contrast (see Fig. (4.10)), resulting in a less accurate “guess” of

5Only an estimate of the cardiac period is necessary.
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the remaining part of the curve and higher noise dependency [9]. Another disad-
vantage of this model is the overestimation of the integral of C (t), which is used to
measure the carrier flow, especially evident for noisy IDCs [9, 29, 177].

Figure 4.10: In (a) the IDC (i.e., C(t)) with recirculation is shown. In (b)
the logarithmic plot of the IDC as well as the short segment
that is suitable for the exponential fitting are shown.

As already mentioned, Eq. (4.6) can be interpreted either as an exponential dis-
tribution or as the impulse response of a mono-compartment model. Assuming to
have a chamber (compartment) of volume V with only one input and one output
where a fluid is flowing, if the chamber is not elastic and the fluid incompressible,
then the input and output flow Φ is the same. For the mass conservation princi-
ple (see Appendix C), the variation of tracer mass in the chamber (i.e., VdC (t))
equals the mass of tracer that leaves the chamber (i.e., C (t)dV ). Therefore, since
C (t)dV =C (t)Φdt , the system can be described by a differential equation as given
in Eq. (4.7).

VdC (t) = −C (t)Φdt (4.7)
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Eq. (4.7) can be written as given in Eq. (4.8) and solved in the Laplace domain as
given in Eq. (4.9), where C0 represents the initial condition at time t0.

V

Φ

dC (t)

dt
+C (t) = 0 (4.8)

C (s)

C0
= 1

s+ Φ
V

(4.9)

If a tracer-bolus is rapidly injected in the chamber at time t0 and the mixing is
perfect6, then C0 = m/V (with m equal to the injected mass of tracer). The result of
the anti-transformation of Eq. (4.9) in the time domain is given as in Eq. (4.6), with
τ = V/Φ and C (t0) = C0 = m/V .

(m/V )u0 (t− t0) represents the input impulse7, while h (t) = e− t−t0
τ represents the

impulse response of the mono-compartment system. Without any loss of generality,
we assume t0 = 0.

Figure 4.11: Scheme of a two-compartment model. Vi and Ci (i = 1, 2) rep-
resent the compartment volume and concentration respectively.
hi (t) is the impulse response of each compartment.

A model that is often adopted in the IDC theory is the two-compartment model,
which is obtained by adding a second equation (representing the second compart-
ment) to Eq. (4.8). It is related to the cardiac functionality, which is based on two
double-compartment pumps. The resulting differential system is given in Eq. (4.10),
where C1 (t) and C2 (t) are the contrast concentrations in the two chambers of volume
V1 and V2 respectively (see Fig. (4.11)).{ V1

Φ

dC1(t)
dt +C1 (t) = 0

V2
Φ

dC2(t)
dt +C2 (t)−C1 (t) = 0

(4.10)

6For all the compartmental models it is assumed to have a good mixing of the indicator in each
chamber.

7u0 (t− t0) defines the dirac impulse centered at time t0.
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A solution of system (4.10), assuming the injection time equal to zero, gives
C1 (t) and C2 (t) as in Eq. (4.11), where τ1 = V1/Φ and τ2 = V2/Φ.

C1 (t) = m
V1
e− t

τ1

C2 (t) = m
V1−V2

(
e− t

τ1 − e− t
τ2

) (4.11)

To make the model more general, it is possible to consider only a fraction of
the first compartment out-flow as the in-flow of the second compartment (the rest
of the flow is lost). As a consequence, different flows (e.g., Φ1 and Φ2, Φ1 ≥ Φ2)
can be used to model the output vessels of the compartments [10]. However, the
only difference with respect to Eq. (4.11) concerns the coefficient in front of the
exponentials that represent C2. The new coefficient equals m/(V1−V2Φ2/Φ1).

More interesting is the IDC in a cascade of n equal chambers. The nth equation
of the system is given as in Eq. (4.12).

V

Φ

dCn (t)

dt
+Cn (t)−Cn−1 (t) = 0 (4.12)

For each chamber (n ≥ 2) the initial condition is C (0) = 0. Thus, in the Laplace
domain the iterative equation (4.12) is given as in (4.13).

Cn−1 (s) = 1
τ

s+ 1
τ

Cn (s) with τ = V
Φ

(4.13)

If the input to the first chamber (n = 1) is an impulse (Dirac function) of area
m/V at time t0 = 0 (i.e., (m/V )u0 (t)), then, for n ≥ 2, Cn (s) can be expressed as
given in Eq. (4.14) (Laplace domain) and Eq. (4.15) (time domain).

Cn (s) = m

V

(
1
τ

s+ 1
τ

)n−1
(4.14)

Cn (t) = mtn−2e− t
τ

V τ n−1 (n−2)!
(4.15)

Eq. (4.15) also represents a χ2-distribution with 2n degrees of freedom. There-
fore, the n-compartment model (with equal volume of the chambers) is basically a
distribution with three independent parameters, like the standard distributed models.

If the volumes of the chambers are different, a different model, which is basically
a multi-exponential model, is obtained. It is the summation of a number of expo-
nential functions equal to the number of compartments. The number of degrees of
freedom increases as well as the complexity of the fitting algorithm. Developing such
models is an effort that does not lead to better results in terms of representation and
interpolation of a real dilution system (see [16], p. 251).
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Rather than focusing only on the impulse response, also the system response to
different inputs can be considered and the input function integrated in the model. A
common approach replaces the standard Dirac input with a rectangular input [30]. A
valid alternative for modelling the input function is represented by a Gaussian func-
tion. In [178], for instance, a Gaussian input is convoluted with a mono-compartment
exponential model in order to fit the measured IDC.

The impulse response of the compartment could be also chosen according to
different criteria. The Local Density Random Walk (LDRW) and the First Passage
Time (FPT) models are based on the assumption of randomwalk of the tracer particles
(see next sections). They are the models that we have employed to fit and interpret
the echo-contrast dilution curves, especially for flow and volume measurements. In
particular, we focus on the LDRW model since it gives a better fit for very skew
curves [9–11, 14]) and a better IDC interpretation for volume measurements (see
section 5.3).

Other distributions that are commonly adopted to fit the IDC are the lognormal
distribution and the gamma-variate distribution [29, 30, 179, 180]. Even without a
real physical explanation, they fit the IDC giving very good results in terms of mean
square error and correlation coefficient. The formulation of the lognormal and the
gamma-variate model, as typically used for the IDC fitting, is given as in Eq. (4.16)
and Eq. (4.17) respectively.

C (t) =
{
0 t ≤ 0

A√
2πσ t

e− (ln(t)−µ)2

2σ2 t > 0
(4.16)

C (t) =
{
0 t ≤ 0
Atαe−tβ t > 0

(4.17)

The parameter A is the scale factor of the model. The integrals of Eq. (4.16) and
Eq. (4.17), which can be used for flowmeasurements, equal A and Aβ−(1+α)Γ (1+α)

respectively8. In the lognormal distribution, σ is related to the skewness of the curve
while µ is related to the peak-concentration time.

Remark Notice that any such statistical model has to obey the mass conservation
law as given in Eq. (4.18), where m is the injected mass (dose).

∞∫
0

C (t)dt = m

Φ
(4.18)

In general, the use of distributed models, such as the gamma-variate and the log-
normal distribution, leads to a more precise interpolation of the IDC [9, 30]. For

8Γ (α) =
∞∫
0
t(α−1)e−t dt .
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instance, for very symmetric curves the two-compartment model does not give an
accurate fitting of the IDC [10, 13, 14]. This is not a surprise, since modelling the
human circulatory system by a number of compartments is not a reliable assumption
and does not provide any physical information on the diffusion process. Moreover,
the lognormal model fits better than the gamma distribution the rising part of the
distribution, especially for skewed IDCs [12]. In conclusion, the lognormal model
seems to fit the IDC better than any other model except the LDRW model, which
has been shown to fit closely to the lognormal model (the LDRW model makes an
accurate interpolation of the lognormal model [12]), and provides with a physical
interpretation of the model parameters (see next section).

The presented IDC-modelling theory is mainly funded on studies that were devel-
oped for thermo-, dye-, and lithium-dilution techniques. However, also echo-contrast
IDCs have been fitted with compartmental (usually one- or two-compartment mod-
els), gamma-variate, and lognormal models combined with the ultrasound attenuation
model that is given as in Eq. (3.44) [30, 181].

Except for the exponential model, the IDC fitting is usually executed by means
of nonlinear regression techniques, such as Levember-Marquardt or Gauss-Newton
algorithms (see section 5.1) [178, 182]. Also some geometric techniques have been
developed. They give an estimate of the area below the curve in order to measure
the CO. The inflection triangle technique, for instance, is a technique that has been
applied to all the distributions [12, 13, 180]. The area is estimated on the base of the
triangle that is tangent to the two inflections (second derivative equal to zero) of the
IDC.

4.2.2 The Local Density RandomWalk model

The Local Density Random Walk (LDRW) model is a mono-dimensional character-
ization of the dilution process (see Fig. (4.12)). It describes the injection of an in-
dicator into a straight infinitely-long tube where a fluid (carrier) flows with constant
velocity u. This model was introduced by Sheppard and Savage in 1951 [15, 183].
The assumptions are a fast injection (modelled as a Dirac impulse) and a Brownian
motion9 of the indicator, whose particles interact by pure elastic collisions. Without
any loss of generality, we consider the injection time t0 and the injection position
x (t0) equal to zero. If we focus on the discrete motion of a single particle, its posi-
tion X (nT ) at time nT can be described by the stochastic process given in Eq. (4.19),

9Brownian motion, better referred to as arithmetic Brownian motion, is the name given to the ir-
regular movement of pollen grains suspended in water. The phenomenon was observed by the Scot-
tish botanist Robert Brown in 1827, but only in 1905 a quantitative analysis was developed by Albert
Einstein on the basis of the principles of kinetic-molecular theory of heat. According to this theory,
particles microscopically visible suspended in a liquid will perform irregular thermal movements called
Brownian molecular motion.
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Figure 4.12: LDRW experimental model. The lower curves represent the
probability distribution function of the tracer for increasing
time.

where S is a random variable that represents the distance covered by the particle in
the time interval T (single step).

X (nT ) =
n∑
i=1

S (iT ) (4.19)

No assumptions are made on the probability density function of the random vari-
able S (a specific derivation of the LDRW model for a Binomial step distribution
is given in Appendix B). As a consequence of the Brownian motion hypothesis,
each step S (iT ) is independent from the previous ones and X (nT ) is a Markov pro-
cess10 [184]. Therefore, for increasing n (or decreasing T ) the Central Limit Theorem
(CLT, see Appendix B) [185] is applicable to the process X (nT ). If µ and σ are the
mean and the standard deviation of S respectively, then the probability density func-
tion of the random variable X at time nT is described by the process W (x,nT ) as
given in Eq. (4.20).

W (x,nT ) = 1√
2πnσ 2

e− (x−nµ)2

2nσ2 (4.20)

10AMarkov process is a stochastic process where the past has no influence on the future, if its present
is specified. In mathematical terms,

P{x(tn) ≤ xn |x(t), t ≤ tn−1} = P{x(tn) ≤ xn |x(tn−1)},
where P{.} represents the probability function.
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In terms of continuous time t = nT (with T infinitely small), Eq. (4.20) can be
expressed by the Wiener process [186] as given in Eq. (4.21), where α = σ 2/T and
u = µ/T .

W (x, t) = 1√
2π tα

e− (x−tu)2
2tα (4.21)

The concentration of the indicatorC(x, t) is determined by (m/A)W (x, t), where
m is the mass of injected indicator and A is the section of the tube. Thus, as shown
in Fig. (4.12), C(x, t) is described by a normal distribution that moves along the tube
with the same velocity as the carrier (mean equal to tu) and spreads with a variance
that is a linear function of time (variance equal to tσ 2). If we consider α = 2D (D
diffusion coefficient), C(x, t) is a solution of the mono-dimensional diffusion with
drift equation, which is given as in Eq. (4.22) with boundary conditions given as in
Eq. (4.23) and Eq. (4.24) [16].

∂C(x, t)

∂t
= D

∂2C(x, t)

∂x2
−u

∂C(x, t)

∂x
(4.22)

C (x,0) = m

A
u0 (x) (4.23)

∞∫
0

C (x, t)dx = m

A
(4.24)

The conditions stated in Eq. (4.23) and Eq. (4.24) express the fast injection hy-
pothesis and the mass conservation law respectively. Eq. (4.22) represents the link
between the statistical and the physical interpretation of the dilution process. A more
extensive discussion on the diffusion equation and the links with the LDRWmodel is
given in Appendix C.

The derivation of a model for the IDC interpretation requires to focus on a fixed
section of the tube (detection section) where the concentration of the indicator is eval-
uated versus time (see Fig. 4.12). The distance between the injection point and the de-
tection section is determined by x = x0 = uµ. Therefore, µ is theMean Transit Time
(MTT) of the indicator from the injection to the detection site. Wise and Bogaard
[9, 11, 12] formalized the concentration time curve evaluated at distance x0 as given
in Eq. (4.25), whereΦ = uA is the flow of the carrier and λ = µu2/2D= µΦ2/2DA2

is a parameter related to the skewness of the curve.

C (t) = m

µΦ
eλ

√
λµ

2π t
e

− λ
2

(
t
µ

+ µ
t

)
(4.25)

The maximum of C (t) is reached for t = µ(2λ)−1(
√
1+4λ2 − 1) > µ. Notice

that max[C (t)] is given when t = µ only for λ → ∞. It can be explained by the



88 Ultrasound contrast agent dilution curve modelling

Figure 4.13: LDRW model for λ equal to 2, 5, and 10. µ is fixed and equal
to 100s.

physics of the dilution process. If we consider L = x0 as the characteristic length of
the LDRW model, it follows that 2λ equals the Peclet number, which is defined as
uL/D and is the hydrodynamic parameter used to quantify the ratio between convec-
tion and diffusion in a dilution process [11,187]. The limit λ → ∞ can be interpreted
as an infinitely small contribution of the diffusion in comparison to the convection. As
a consequence, all the particles reach the detection section at the same timeµ = x0/u.
Already for λ > 10, as shown in Fig. (4.13), the curve is almost symmetric, while for
λ < 2 the curve is very skew.

The parameter λ (and therefore also the Peclet number divided by two) can be
also viewed as the ratio between the diffusive time τD (defined as τD = x20/(2D))11

and the convective time x0/u = µ [11].
In conclusion, it is evident that the LDRW model is related to the physical in-

terpretation of a dilution as described by classic hydrodynamics. Some important
properties of C (t) are listed below and are used for the assessment of flow and vol-
ume in the next chapter.

∞∫
0

C (t) = m

Φ
(4.26)

∞∫
0
tC (t)dt

∞∫
0
C (t)dt

= µ

(
1+ 1

λ

)
(4.27)

11The diffusive time τD can be interpreted as the time taken by the standard deviation
√
2Dt , which

describes the pure diffusion process as given in Eq. (4.21) for u = 0, to reach the distance x0.
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The flow Φ can be directly calculated by Eq. (4.26) once the injected dose m
is known. Eq. (4.27) is the first moment of the LDRW model and it is referred to
as Mean Residence Time (MRT) of the indicator between the injection and detection
sites [11]. A discussion on the MRT interpretation and the difference between MRT
and MTT is postponed to the next chapter. An analytical derivation of the solution of
the integrals in Eq. (4.26) and Eq. (4.27) is proposed in section 5.1.2 and Appendix D.

4.2.3 The First Passage Time model

Like the LDRW model and with reference to Fig. (4.12), also the First Passage Time
(FTP) model represents the IDC as the result of the passage of an injected contrast
bolus (fast injection described by a Dirac function), which flows in a fluid-dynamic
system (an infinitely-long tube), through a detection section.

The only difference with respect to the LDRW model concerns the bubble pas-
sage through the detection site. The FPT model hypothesis allows only a single
passage of the bubbles while the LDRW model hypothesis includes multiple pas-
sages. It is like if an absorber layer captured the bubbles right after the detection
site. Therefore, the FPT model is derived from the LDRW model when only the first
passage through the detection site is considered and its formulation is given as in
Eq. (4.28) [9–11], where the meaning of the symbols is the same as for Eq. (4.25).

C (t) = m

Φ
eλ

√
λµ

2π t3
e

− λ
2

(
t
µ

+ µ
t

)
(4.28)

Fig. (4.14) shows three different FPT curves for different values of λ. In the UCA
dilution context, a practical hypothesis might be a compromise between the FPT and
the LDRW model. In fact, despite the use of a small MI, part of the bubbles is still
destroyed while passing through the ultrasound pressure beam.

The derivation of the FPTmodel is rather complicated. However, it can be simpli-
fied by exploiting the LDRW model definition. The probability p(x, t) that a bubble
moves from a distance d = 0 to d = x in time t is described by the unbiased (diffusion
without drift) LDRWmodel as given in Eq. (4.29), where D is the diffusion constant.

p(x, t) = 1√
4πDt

e− x2
4Dt (4.29)

If the bubble reaches the distance x for the first time at time t − τ (τ ∈ [0, t]),
the probability of finding the particle at distance x at time t can be divided into two
contributions: l(x, t − τ) and p(0,τ ). l(x, t − τ) is the probability of a first passage
in x at time t − τ and p(0,τ ) is the probability of a subsequent passage in x at time
τ after the first passage. Thus, p(x, t) is given by a convolution operation as in
Eq. (4.30).
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Figure 4.14: FPT model for λ equal to 2, 5, and 10. µ is fixed and equal to
100 s.

p(x, t) =
t∫
0

l(x, t− τ)p(0,τ ) dτ (4.30)

In the Laplace domain Eq. (4.30) can be expressed as given in Eq. (4.31).

P(x,s) = L(x,s) · P(0,s) (4.31)

As a consequence, L(x,s) is given as in Eq. (4.32).

L(x,s) = P(x,s)

P(0,s)
(4.32)

p(x, t) is expressed in the Laplace domain as given in Eq. (4.33).

P(x,s) = 1√
4πDs

e−
√

x2s
D (4.33)
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Therefore, L(x,s) is given as in Eq. (4.34).

L(x,s) = e−
√

x2s
D (4.34)

The FPT process is the anti-transformation in the time domain of L(x,s), which
is given as in Eq. (4.35).

l(x, t) = x√
4πDt3

e− x2
4Dt (4.35)

l(x, t) represents the probability density function that the bubble reaches the dis-
tance x for the first time at time t.

The same procedure is applicable in case of drifting diffusion. p(x, t) is now
defined as given in Eq. (4.36), where u is the carrier fluid velocity.

p(x, t) = 1√
4πDt

e− (x−ut)2
4Dt (4.36)

If the detection distance is fixed to x = x0 = uµ, and D/u2 = K 2, Eq. (4.36) can
be rewritten as given in Eq. (4.37).

p(µ, t) = 1

u
√
4πK 2t

e− (µ−t)2
4K2 t (4.37)

The model is valid for u > 0. For u = 0 the diffusion without drift model must be
used. As for the diffusion without drift case, Eq. (4.37) is substituted into Eq. (4.30),
which is now expressed as given in Eq. (4.38).

p(µ, t) =
t∫
0

l(µ, t− τ)p(0,τ ) dτ (4.38)

Once again, Eq. (4.38) can be solved in the Laplace domain. The resulting
L(µ,s) represents the FPT model in the Laplace domain when drift is included.
L(µ,s) is expressed as given in Eq. (4.39).

L(µ,s) = e− µ
(
1−

√
1−4sK2

)
2K2 (4.39)

Taking the inverse Laplace transform, Eq. (4.39) is expressed in the time domain
as given in Eq. (4.40).

l(µ, t) = µ√
4πK 2t3

e− (µ−t)2
4K2 t (4.40)

l(µ, t) represents the FPTmodel with drift in the time domain. Since L(µ,0) = 1,
the integral of l(µ, t) in the interval (0,∞) equals 1 and l(µ, t) may be considered
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as a statistical distribution. With the substitution λ = (u2µ)/(2D), it follows that
K 2 = µ/2λ and Eq. (4.40) is expressed as given in Eq. (4.28), which is the FPT
model definition as reported by Bogaard, Reth, and Wise [9–11]. The first moment
of the model, as proven by Sheppard [15], is equal to µ.
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Chapter 5

Random walk model fitting and dilution
curve interpretation

Non scholae sed vitae discimus (Seneca).

Based on the models that describe the interaction between ultrasound and contrast
agents, and using a random walk interpretation of the dilution curve, the measure-
ment of the cardiac parameters of interest is presented in this chapter. The first issue
is the interpolation and interpretation of the calibrated IDC by the adopted models. In
particular, we are interested in the LDRWmodel fitting. Therefore, after a brief intro-
duction to the most common fitting techniques (section 5.1), two techniques that are
specifically designed for the LDRW model fitting are proposed. The first technique
is based on a multiple linear regression and allows overcoming the contrast recircula-
tion issue (section 5.1.1) while the second one is based on the moment equations and
could be affected by contrast recirculation (section 5.1.2). The same techniques can
be also applied to the FPT model interpolation. Eventually, the fitted model is used
to interpret the IDC for flow (section 5.2), volume (section 5.3), and EF (section 5.4)
measurements. Experimental and clinical results are provided.

5.1 Least square model fitting

The first solution to fit the IDC by a nonlinear model (LDRW) appears to be a non-
linear interpolation. The goal is to minimize the square error as given in Eq.(5.1),
where yi are the samples of the original signal, f

(
xi ,θ

)
are the samples of the model

to fit (θ is the vector of parameters to optimize), and n is the number of samples that
represents the signal.

ε
(
θ
)=

n∑
i=1

(
yi − f

(
xi ,θ

))2
(5.1)

The interpolation techniques that minimize the square error are referred to as
Least Square Estimation (LSE) algorithms. There are many algorithms developed to
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fit a nonlinear model. However, the most of them are iterative ones1 [188], whose
common problem is the convergence-time. Any iterative fitting algorithm needs the
determination of an initial value for the vector θ . After this value has been cho-
sen, the iterations can start. The error ε

(
θ
)
is approximated by Taylor expansion

around the initial value and its minimum gives the value of θ for the following step.

For a second order approximation we have that θ i+1 = θ i −
[
H
(
ε
(
θ i
))]−1 [ ∂ε(θ i)

∂θ

]
,

where i is the iteration step number and H is the Hessian matrix2 [188]. The term[
H
(
ε
(
θ i
))]−1 [ ∂ε(θ i)

∂θ

]
is referred to as Newton Step.

In the implemented algorithms the Hessian matrix is usually approximated3, since
its evaluation at each iteration would result in a very slow process. If

[
J
(
θ
)]
is the

Jacobian matrix4 of
(
y− f

(
x,θ
))
, it follows that

[
∂ε(θ)

∂θ

]
= 2

[
J
(
θ
)]t [

y− f
(
x,θ
)]

and
[
H
(
ε
(
θ
))]= 2

([
J
(
θ
)]t [

J
(
θ
)]+ [A (θ)]), where the matrix [A (θ)] is related

to the Hessian matrix. The difference between the most common methods stands in
the approximation of

[
A
(
θ
)]
. In fact,

[
A
(
θ
)]
is usually approximated as λ [I ], where

λ is an integer and [I ] is an identity matrix, whose dimension equals the length of the
vector θ . In the Gauss-Newton algorithm λ is equal to 0, in the Levember-Marquardt
algorithm λ can be any finite value different from 0, and in the Steepest Descent
algorithms λ → ∞ [188, 189]. Since the value of λ can be adjusted, the Levember-

1An alternative non-iterative algorithm can be the method of moments, where a set of equations is
derived by equating the statistical moments of the model to the moments as calculated by the experi-
mental data. The number of equations and then of moments that are used must be equal to the number
of parameters to optimize. Unfortunately, this powerful method, which is proposed in section 5.1.2,
could encounter some problems due to the recirculation of the indicator. In fact, the moments might be
not properly estimated from the experimental data.

2The Hessian matrix of ε
(
θ
)
for θ constituted by p elements (parameters) is defined as follows:

H
(
ε
(
θ
))=

⎡⎢⎢⎢⎣
∂2ε(θ)
∂θ1∂θ1

· · · ∂2ε(θ)
∂θ1∂θp

...
. . .

...

∂2ε(θ)
∂θp∂θ1

· · · ∂2ε(θ)
∂θp∂θp

⎤⎥⎥⎥⎦
3To achieve a more accurate approximation of the Hessian matrix there are special algorithms, which

are referred to as Large-Scale methods.
4The Jacobian matrix J

(
θ
)
of (y− f

(
x,θ
)
), for θ constituted by p elements (parameters), and x

and y sampled by n samples, is obviously equal to the Jacobian of f
(
x,θ
)
, and defined as follows:

J
(
θ
)=

⎡⎢⎢⎢⎣
∂ f (x1,θ)

∂θ1
· · · ∂ f (x1,θ)

∂θp
...

...
...

∂ f (xn ,θ)
∂θ1

· · · ∂ f (xn ,θ)
∂θp

⎤⎥⎥⎥⎦
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Marquardt algorithm gives a better approximation of the Hessian matrix. Therefore,
although it is slower, it suits better high-residual problems.

Usually the IDC is very noisy, leading to large residuals and long convergence
time of the iterative algorithms. The convergence time is strongly related to the ini-
tial values of the parameters to optimize. Therefore, the initial “guess” of the vector
θ should be as close as possible to the optimum θ . With the LDRW model this can
be done by the inflection triangle technique (see the end of section 4.2) or by a loga-
rithmic transformation of the measured IDC followed by a multiple linear regression
limited to a small part of the IDC [13,182].

The solution that we propose in the next section is a linear-regression algorithm
that makes possible to avoid the following nonlinear regression, since the result is
already optimum in the LSE sense. The advantage of a linear regression over a non-
linear one stands in the reliability of the fit, which does not need to be initialized with
a preliminary estimation of the model parameters. A nonlinear regression can either
show very high convergence-time, or converge into local minima of ε

(
θ
)
(wrong

fitting), or even fail the approximation (no convergence and no fit).
As an alternative to the LSE approach, we also propose in section 5.1.2 a tech-

nique that is based on the derivation of the moment equations for the LDRW model.

5.1.1 Linear regression fitting algorithm

A new automatic fitting algorithm that is based on multiple linear regression is pro-
posed. No assumptions are needed on the input IDC and the injection time. The
calibrated intensity signal C (t), which contains the IDC, is processed in two main
phases.

In the first phaseC (t) is filtered by a low-pass FIR filter (Finite Impulse Response
filter, whose impulse response is defined by h (t)) to remove the high frequency noise
introduced by the measurement system. Then the filtered signal G (t) = h (t)∗C (t) is
used to determine the position of the IDC within the signal C (t). The time coordinate
tmax of the maximum of G (t) is determined, and based on this value the time interval
for performing the multiple linear regression is established. This regression time
interval is defined for t ∈ [tstart, tend], with G(tstart) = 0.1G (tmax) along the rising edge
of G(t) and G(tend) = 0.3G (tmax) along the descending edge of G(t), which is the
recirculation appearance time [13], i.e., the time when the contrast reappears into the
ROI after a first passage through all the circulatory system.

The initial part of C (t) contains only background noise from the measurement
system while the IDC is absent. Furthermore, especially when µ is large, the first part
of the IDC shows a low SNR (smaller than -50dB). As a consequence, it is impossible
to determine the injection time t0 by a simple analysis of either G (t) or C (t). The
definition of tstart ensures that tstart > t0 and therefore that the regression interval does
not include the low-SNR initial part of the IDC.
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Before starting the linear fitting, the baseline of C (t) is estimated and subtracted.
It is estimated as the mean of C (t) calculated in an early time interval with t < t0.

Once the interval [tstart, tend] is defined and the baseline adjusted, in the second
phase of the fitting process C (t) and the LDRW model are ln-transformed to obtain
a linear model and to apply the multiple linear regression. The resulting linear model
is given as in Eq. (5.2).

ln(C (x1))+ 1

2
ln(x1) = P1− P2x1− P3x2 (5.2)

x1 = t− t̂0

x2 = 1

t− t̂0

P1 = λ+ ln

(
m

µΦ

)
+ 1

2
ln

(
λµ

2π

)
P2 = λ

2µ

P3 = λµ

2

P1, P2, and P3 are the parameters to be optimized, x1 and x2 are the variables
of the linearized model, and t̂0 is the estimate of t0. The least square estimation of
the parameters P1, P2, and P3 is solved by Eq. (5.3) [190], which gives the optimum

estimation Popt =
[
Popt
1 Popt

2 Popt
3

]
. The matrix [X ] and the vector Y are defined as

shown in Eq. (5.4), where xi1 and xi2 (i ∈ [1..n]) are the n samples of x1 = t− t̂0 and
x2 = (t− t̂0

)−1
in the regression interval.

Popt = ([X ]t [X ])−1 [X ]t Y =
⎡⎣ Popt

1

Popt
2

Popt
3

⎤⎦ (5.3)

[X ]=

⎡⎢⎢⎢⎣
1 x11 x12
1 x21 x22
...

...
...

1 xn1 xn2

⎤⎥⎥⎥⎦ (5.4)

Y =

⎡⎢⎢⎢⎣
ln(C (x11))+ 1

2 ln(x11)
ln(C (x21))+ 1

2 ln(x21)
...

ln(C (xn1))+ 1
2 ln(xn1)

⎤⎥⎥⎥⎦
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Figure 5.1: MSE of the fitting in the regression interval as function of
tstart − t̂0.

Figure 5.2: Linear fitting of ln(C (t)). Fig. (a) shows the fitting in the com-
plete time domain with t0 = 0. Note that C (t) does not go to
−∞ when t → 0 because of the noise. Re [ln(C (t))] is plot-
ted for negative values of C (t). Fig. (b) shows the time interval
where the multiple linear regression is performed.
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However, t0 is not determined yet. Since by definition tstart > t0, the optimum
t0 can be estimated by applying Eq. (5.3) and Eq. (5.4) recursively for decreasing
values of t̂0 staring from t̂0 = tstart until the LSE of the fit is found. This technique
is based on the characteristic relation between the Mean Square Error (MSE) of the
fit and t̂0 (̂t0 ≤ tstart). In fact, the relation shows a monotonic behavior and an global
minimum for t̂0 = t0 (see Fig. (5.1)). In order to decrease the time-complexity the
recursive search is performed by two sub-searches with resolution of 40ms (as the
CCIR system, standard European format) and 1ms respectively. Therefore, the final
time resolution is 1ms.

Curves of 2000 samples are fitted in less than 1s using a Matlab� (The Math-
works) implementation with an AMD 750MHz processor and 128MBytes RAM.

Figure 5.3: A measured IDC with fitted LDRW model (a) and the absolute
value of the difference between the model and the experimental
data (b). The noise amplitude is clearly modulated by the signal
amplitude.

When C (t) is simulated by Eq. (4.25), the curve fit is very accurate. When C (t)
is measured experimentally, the importance of defining tstart large enough to exclude
from the linear fitting the initial part of the IDC emerges. In fact, due to the noise,
limit t → t0 of ln(C (t)) does not go to −∞ as expected. Therefore, when the re-
gression interval is close to t0, the parameter P3, which is factor of the hyperbole
1/(t − t0), is not properly estimated. Fig. (5.2) shows ln (C (t)) in the complete time
domain (a) and in the selected regression interval (b). It is evident how the linear
regression is not performed on the low-SNR time interval.

The performance of the fitting algorithm was evaluated by adding noise to the
theoretical LDRW curve Ct (t). The experimental measurements show a modulated
white noise, whose amplitude is linearly related to the amplitude of C (t) with deter-
mination coefficient ρ2 > 0.7 (see Fig. 5.3). Therefore, artificial white noise N (t)
was generated by a random sequence of numbers whose variance (var ) was a linear
function of C2

t (t), i.e., var [N (t)]= kC2
t (t), so that k can be interpreted as (SNR)−1.
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The low-power background noise was neglected. The fitting ofCN (t) =Ct (t)+N (t)
was performed for k ∈ [0..1/16] (SNR from ∞ to 12dB). Lower SNRs have never
been encountered in the experimentation.

The evaluation of the fitting is mainly aimed to study the relationship between
parameter estimates and noise levels. This relation is especially evident regarding the
estimation of the integral of Ct (t) when noise is added. The area below the LDRW
model is equal to m/Φ (see Eq. (4.26)), which, as from the Stewart-Hamilton equa-
tion (see Eq. (2.6)) and the LDRW model definition, is the only parameter involved
in the flow measurement. Once the vector Popt of Eq. (5.2) and Eq. (5.3) is estimated
on the curve CN (t), the IDC estimated area is given as in Eq. (5.5).

[m
Φ

]
e
=
√

π

Popt
2

e

(
Popt1 −2

√
Popt2 Popt3

)
(5.5)

The estimated area [m/Φ]e of the LDRW fit of CN (t) was compared to the area
m/Φ below Ct (t). The results, averaged over 1000 different noise sequences, show a
negative bias of

(
[m/Φ]e −m/Φ

)
that increases for increasing noise (i.e., increasing

k). No significant differences were appreciated for different λ (λ ∈ [1..10]). Different
µ and m/Φ also led to the same results. Therefore, the results obtained for different
λ were averaged as shown in Fig. (5.4) and interpolated by linear regression (ρ2 >

0.9990). The resulting linear relation between
(
bias/ [m/Φ]e

)
and k is given as in

Eq. (5.6).
bias

[m/Φ]e
∼= 0.5255 · k (5.6)

The bias described in Eq. (5.6) can be explained as an effect of the logarithmic
transformation of CN (t) before the linear fitting, which changes the error metrics.
In fact, the ln-transformation compresses the positive noise more than the negative
one. As a consequence, the fitted curve is lower than the original Ct (t), resulting in
a reduced area below the curve (see Fig. (5.5)).

Based on Eq. (5.6), a compensation of this effect is implemented in the fitting
algorithm. k is determined as the variance of the difference between the LDRW fit
and C (t) - estimated where the LDRW fit is larger than 95% of its peak - divided by
the squared value of the LDRW-fit peak. When the fitting includes the compensation
algorithm, no bias is found in the estimation of the integral of C (t). Fig. (5.5) gives
an example of compensation in case of high power noise (k = 1/16).

The variance of
(
[m/Φ]e −m/Φ

)
is not affected by the compensation algorithm.

It is a linear function of k (m/Φ)2. The angular coefficient for λ ∈ [1..10] is estimated
to be equal to 0.0049 with ρ2 = 0.98. Therefore, in the worst considered case (k =
1/16) the standard deviation of

(
[m/Φ]e −m/Φ

)
is equal to 1.75% of m/Φ.
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Figure 5.4: Increase of the negative bias (normalized to the estimated area
[m/Φ]e) as function of k, i.e., (SN R)−1.

Figure 5.5: Simulation of the fitting. The dots and the upper curve represent
the LDRW model (λ = 5) with and without added noise (k =
1/16) respectively. The mid and the lowest curve are the LDRW
fit of the noise-added curve with and without area compensation.
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No bias was recognized in the estimation of λ and µ, therefore, the MTT and
MRT (end of section 4.2.2) estimates, which are given as in Eq. (5.7) and Eq. (5.8),
are unbiased also for small SNR.

MTT = µ =
√
P2
P3

(5.7)

MRT = µ

(
1+ 1

λ

)
= 2
√
P2P3 (5.8)

The same algorithm can be easily adopted for the FPTmodel fitting (see Eq. (4.28)).
In this case, the model linearization in Eq. (5.2) becomes as given in Eq. (5.9).

ln(C (x1))+3ln(x1) = P1− P2x1− P3x2 (5.9)

x1 = t− t̂0

x2 = 1

t− t̂0

P1 = λ+ ln
(m
Φ

)
+ 1

2
ln

(
λµ

2π

)
P2 = λ

2µ

P3 = λµ

2

5.1.2 Method of moments

An alternative LDRW-model fitting algorithm also is proposed . It is based on the cal-
culation of the first two moments (M1 and M2) and the integral (M0) of the model in
order to obtain a system of three independent equations and three unknowns (the
model parameters). The nth moment Mn (n ≥ 1) of C(t) is defined as given in
Eq. (5.10).

Mn =

∞∫
0
tnC(t) dt

∞∫
0
C(t) dt

(5.10)

While a clear recursive relation for the analytical expression of the moments of
the FPT model is derived in literature (see [15], page 253), the same is not available
for the LDRWmodel. Therefore, we propose our own derivation of the moments M0,
M1, and M2 of the LDRW model.
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The LDRWmodelC(t) can be expressed (see section 4.2.2) as given in in Eq. (5.11),
where A is the area under the curve, µ is the MTT, and K 2 = 2D/v2 = µ/λ (D is the
diffusion constant of the fluid-dynamic system).

C(t) = A√
2πK 2t

e− (µ−t)2
2K2 t (5.11)

We define the functions mn as given in Eq. (5.12), so that the zero moment of
C(t) is M0 = m−1/2, the first moment is M1 = m1/2/m−1/2, and the second moment is
M2 = m3/2/m−1/2.

mn =
∞∫
0

tn A√
2πK 2

e− (µ−t)2
2K2 t dt = Ae

µ

K2√
2πK 2

∞∫
0

tne
− µ

2K2

(
µ
t + t

µ

)
dt (5.12)

With the substitution t/µ = y, Eq. (5.12) becomes as given in Eq. (5.13), where
β = µ/2K 2.

mn = Ae
µ

K2√
2πK 2

µn+1
∞∫
0

yne
−β
(
y+ 1

y

)
dy (5.13)

In order to simplify the calculations, we focus on the term m∗
n, which is defined

as in Eq. (5.14).

m∗
n =mn

√
2πK 2

Ae
µ

K2

1

µn+1 =
∞∫
0

tne
−β
(
t+ 1

t

)
dt (5.14)

Theorem 5.1 m∗
n = n

β
m∗
n−1+m∗

n-2

Proof.

m∗
n =

∞∫
0

tne
−β
(
t+ 1

t

)
dt = −

∞∫
0

(
tne− β

t

)
d

(
e−tβ

β

)
Integrating per parts we obtain the following.

m∗
n =

[
− tn

β
e

−
(

β
t +tβ

)]∞

0

+
∞∫
0

(
e−tβ

β

)
d
(
tne− β

t

)
=

= 0+
∞∫
0

(
n

β
tn−1+ tn−2

)
e

−β
(
t+ 1

t

)
dt = n

β
m∗
n-1+m∗

n-2
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Theorem 5.2 m∗
n = m∗

−(n+2)

Proof.

m∗
n =

∞∫
0

tne
−β
(
t+ 1

t

)
dt

With the substitution t = 1/y, dt = −dy/y2 and m∗
n = −

0∫
∞
y−(n+2)e−β

(
y+ 1

y

)
dy =

m∗
−(n+2).

Corollary 5.2.1 m∗
−3/2 = m∗

−1/2

Proof. Directly from Theorm 5.2.

From Theorems 5.1 and 5.2, Corollary 5.2.1, Eq. (5.14), and the fact that m−1/2 =
A (for the analytical solution of the integral m−1/2 see Appendix D) we can derive
m∗

−1/2, m
∗
1/2, and m

∗
3/2 as given in Eq. (5.15), Eq. (5.16), and Eq. (5.17) respectively.

m∗
−1/2 = m−1/2

√
2πK 2

A2µ
e− µ

K2 =
√
2πK 2

µ
e− µ

K2 (5.15)

m∗
1/2 = 1

2β
m∗

−1/2+m∗
−3/2 =

(
1

2β
+1

)
m∗

−1/2 (5.16)

m∗
3/2 = 3

2β
m∗
1/2+m∗

−1/2 =
[
3

2β

(
1

2β
+1

)
+1

]
m∗

−1/2 (5.17)

Therefore, using Eq. (5.14), Eq. (5.16), Eq. (5.17), and the relations β = µ/2K 2

and K 2 = µ/λ, we can calculate the first and the second moment M1 and M2 of the
LDRW model as given in Eq. (5.18) and Eq. (5.19) respectively.

M1 = m1/2

m−1/2
= µ

m∗
1/2

m∗
−1/2

= µ

(
1+ 1

2β

)
= µ

(
1+ 1

λ

)
(5.18)

M2 = m3/2

m−1/2
= µ2 m

∗
3/2

m∗
−1/2

= µ2

[
3

2β

(
1

2β
+1

)
+1

]
=
(µ

λ

)2 (
λ2+3λ+3

)
(5.19)
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Remark Notice that M1 can be expressed as M1 = µ+ (2D/v2
)
, which makes

evident the fact that the first moment is given by the average time µ that the par-
ticle takes to go from the injection to the detection site plus a term that is directly
correlated to the diffusion constant D of the system.

The calculation of the moments can be used in order to fit the IDC by the LDRW
model. If we refer to the expression for the LDRWmodel C (t) as given in Eq. (4.25),
then the fitting consists of the estimation of the parameters A=m/Φ (m injected dose
mass), µ, and λ. The parameter A is given by the integral of the curve C (t) in the
interval (0,∞), which is given byM0 �m−1/2 = A (see Appendix D). The parameters
µ and λ are calculated by solving the system of two equations in two unknowns (µ
and λ) as given in Eq. (5.18) and Eq. (5.19). The solution of the system leads to two
quadratic equations whose solutions express µ and λ as function of M1 and M2.

The equations for µ and λ are given as in Eq. (5.20) and Eq. (5.21) respectively.

µ2−3M1µ+ (3M2
1 −M2

)= 0 (5.20)

λ2
(
M2−M2

1

)+λ
(
2M2−3M2

1

)+ (M2−3M2
1

)= 0 (5.21)

The solution of Eq. (5.20) and Eq. (5.21) are given in Eq. (5.22) and Eq. (5.23).
The negative roots of the quadratic equations are selected for the solution.

µ = 1

2

(
3M1−

√
4M2−3M2

1

)
(5.22)

λ =
3M2

1 +M1

√
4M2−3M2

1 −2M2

2
(
M2−M2

1

) (5.23)

An iterative algorithm – as already for the linear regression in section 5.1.1 – is
implemented to determine the IDC starting time that minimizes the MSE of the fit.

The same fitting method can be used for the FPT model fit. In this case, the
moments M0, M1, and M2 are equal to m/Φ, µ, and µ2 (1+1/λ) respectively [15].
As a consequence, µ = M1 and λ = M2

1/(M2−M2
1 ).

As for the linear regression method, this algorithm was tested with experimental
curves that were recorded by means of the in-vitro set-up that is described in sec-
tion 5.2 for flow measurements. A 0.5ml SonoVue� contrast agent bolus (2.5mg)
was injected and the IDC measured by a Sonos 5500 ultrasound scanner (Philips
Medical Systems) in a range of flows going from 0.5L/min to 5L/min.

The LDRW model was fitted to 80 IDCs by means of both the linear regression
and the moment algorithm. The average determination coefficient ρ2 equaled 0.957
and 0.950 respectively (variance equal to 1.210−3 and 10−3). The methods were also
compared in-vivo by means of 20 injections in humans. The result was an average
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ρ2 equal to 0.926 and 0.924 for the linear regression and the moment method fits
respectively (variance equal to 3.510−3 with both techniques).

In conclusion, the linear regression LDRW fits are slightly more accurate. For
in-vivo measurements, where the contrast recirculation can be evident, the moment
method cannot provide an accurate estimate of the moments based on the measured
IDC, resulting in less accurate fits. In opposite, the linear regression fitting performs
the LSE optimization in an IDC interval where the recirculation is not present. For
the rest of this study, due to the robustness to recirculation, the interpolation and
interpretation of the IDC is performed by the linear regression fitting.

5.2 Cardiac output measurement

The flow measurement requires the video or acoustic intensity curves to be trans-
formed into IDC (contrast concentration curves) and fitted by the LDRW model. As
from Eq. (5.5), the flow Φ is directly provided by the fitted model once the injected
dose m is known. Since m/Φ is the time integral of the LDRW model, the same
measurement of Φ is obtained by the application of Eq. (2.6) (Stewart Hamilton
equation). As discussed in section 2.1, we refer to flow with either the symbol Φ or
the abbreviation CO, depending on the context. Therefore, Φ = CO, and we use Φ

or CO referring to in-vitro or in-vivo flow respectively. In fact, in this study, in-vivo
measurements aim to assess the cardiac flow, which is referred to as CO.

As reported in section 4.1, we inject a small contrast bolus so that the relation
between the measured signal and the contrast concentration is in an approximately-
linear range. Referring to Eq. (4.4), the linear calibration for video intensity is given
as G(t) = a1C(t)+a0. a0 becomes equal to zero after the fitting algorithm adjusts the
baseline to the zero level. Proven to be in the linear calibration range, a1 can be easily
derived from the LDRW model fit of one of the measured curves and integrated into
the injected dose m (see Eq. (4.25)). In fact, based on the fit and known the real flow
Φ, the value form can be derived from Eq. (5.5) and used to fit and interpret the rest of
the measured curves. The value of m can be interpreted as the “video dose” (average
video intensity times volume unit or voxel) corresponding to the injected contrast
bolus. The same reasoning can be applied to the acoustic intensity calibration.

Two in-vitro flow measurement experimentations, making use of two different
setups, were carried on. The first one was based on videodensitometry using a TEE
probe in fundamental harmonic while the second one was based on acoustic measure-
ments using power modulation mode. Also the hydrodynamic setups were different.
A complete description of the setups as well as the measurement results is provided
below.
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Figure 5.6: Experimental videodensitometric flow-measurement set-up.

Figure 5.7: LDRW model fit of a noisy IDC. ρ2 = 0.97.

Fig. (5.6) shows the first hydrodynamic in-vitro circuit that was built to test the
videodensitometric method. A Medtronic 550 bio-console centrifugal pump with
magnetic flowmeter (clinically used for extracorporeal circulation) generated and
measured the flow. The flow measured by the magnetic flowmeter was the reference
to validate the performance of the ultrasound method.



5.2 Cardiac output measurement 107

The contrast injector was positioned after the pump in order to avoid the col-
lapse of the contrast micro-bubbles due to the turbulence of the pump. A TEE trans-
ducer was placed on a plastic bag, considered as a model for the cardiac chamber.
The ultrasound transducer and the plastic bag were both submerged in a water-filled
basin to obtain a good acoustic impedance matching. The adopted ultrasound scan-
ner was a Sonos 4500 equipped with a TEE transducer (some measurements were
also performed with a Sonos 2000 scanner). The centrifugal pump was covered by
aluminium foils for magnetic isolation. Such a solution allowed avoiding the inter-
ference between scanner and pump.

Boluses of 10ml of SonoVue� diluted 1:100 (i.e., 50mg/L) in saline (0.9%NaCl)
were injected for the flow measurements. As a result, the injected boluses contained
0.5mg of SonoVue� and a peak concentration of 5mg/L was barely reached in the
perfusion bag. Therefore, the linear calibration hypothesis was applicable. The set-
ting of the ultrasound scanner was the same as adopted for the fundamental harmonic
calibration in Fig. (4.6).

A critical part of the set-up was the injector. A double injector system was de-
veloped in order to avoid the injection of air-bubbles. Several injections of degassed
water were used in order to test the system. No air bubbles were detected.

The video output of the ultrasound scanner was grabbed by a 1407 PCI frame
grabber (National Instruments) and processed in real-time to obtain the video inten-
sity curves, i.e., the plots of the mean gray-level in the selected ROI versus time. The
curve was then calibrated (linear calibration) and fitted by the LDRW model. The
developed software integrates Labview� (National Instruments), and Matlab� (The
Mathworks) implementations.

Since each ultrasound scanner is provided with a videorecorder (VCR), it is
easy to generate analogical archives (S-VHS videotapes) and perform further off-line
video analysis by playing the videotapes on a VCR.

The LDRW model fit of the measured IDCs gives always ρ2 > 0.95. Fig. (5.7)
shows the fit of a noisy IDC.

The MSE is not considered as a parameter to validate the LDRW model since it
depends on the noise power. Instead, the MSE was used to compare the developed
linear fitting algorithm to the standard Levember-Marquardt algorithm. The initial
values of the Levember-Marquardt fitting were the parameters estimated by linear
fitting. The results show that the Levember-Marquardt algorithm does not improve
the MSE of the linear fit.

The flow estimates were validated by comparison with those measured by the
magnetic flowmeter inserted in the experimental hydrodynamic circuit (see Fig. (5.6)).
The results are shown in Fig. (5.8). The determination coefficient ρ2 between the flow
measurements executed by UCA dilution and magnetic flowmeter is 0.997 and 0.982
using a Sonos 4500 and a Sonos 2000 ultrasound scanner respectively.
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Figure 5.8: Ultrasound videodensitometric flow measurements (Y axis) com-
pared to magnetic flowmeter ones (X axis). The triangles and
the rhombus are the results of the flow measurements made by a
Sonos 2000 and a Sonos 4500 ultrasound scanner respectively.
The determination coefficients are 0.999 and 0.994 respectively.

A different set-up5, whose scheme is shown in Fig. (5.9), was used for acous-
tic intensity measurements. It consisted of an artificial ventricle, whose movements
were driven by a piston pump that was fully controlled via PC. Two artificial valves
simulated the mitral and the aortic valve (Fig. (5.10)) and a resistor6 simulated the
resistance of the circulatory system capillarity. The hydrodynamic circuit was open
to avoid recirculation and permit repeated measurements. The input and output static
pressures were stabilized.

The atrium was modelled as a water reservoir (290ml) on top of the ventricle,
which also realized a ventricular pre-load (0.75mmHg). The contrast bolus (0.25mg
SonoVue� in 5ml of saline) was injected in the tube leading to the ventricle pre-
load. The use of power modulation allowed the reduction of the injected dose to half
of the dose used with fundamental harmonic. This produced a further reduction of
the attenuation effect and allowed a quicker injection, closer to the Dirac impulse
injection that is assumed by the LDRW model.

A Sonos 5500 ultrasound scanner was used for the acoustic measurements. The
scanner setting (power modulation mode) was identical with that used for the calibra-
tion in Fig. (4.2). The ultrasound transducer - an S3 probe - pointed to the ventricle

5The set-up was developed by prof.dr. van de Vosse and dr. Stijnen at the Biomedical Engineering
Lab of the Eindhoven University of Technology and adapted to contrast-ultrasound measurements.

6The resistor, measured with flow equal to 3L/min, was 32.4MPa · s ·m−3.
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Figure 5.9: Scheme of the artificial ventricle used for acoustic flow measure-
ments.

Figure 5.10: The prosthetic valve as used in the artificial ventricle set-up.

Figure 5.11: A picture of the artificial ventricle is shown together with a
screen-shot of the B-mode video during a flow measurement.
The ventricle is fully opacified by contrast.
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apex through a window made of a thin polyurethane layer. The PR was fixed to 60
beats per minute and different flows from 0 to 3L/min were generated by adjusting
the pump SV (piston excursion). Fig. (5.11) shows a picture of the system during a
flow measurement together with the resulting B-mode video.

The results of two sets of measurements are shown in Fig. (5.12). ρ2 equals
0.909 and 0.995. The lower accuracy of the first set of measurements was due to the
acoustic reverberation produced by the interface air-water in the ventricle pre-load
during mitral valve opening. The problem was solved by submerging an acoustic
absorber layer before the second set of measurements.

Figure 5.12: Ultrasound flow measurements using the fluid-dynamic system
in Fig. (5.9) and Fig. (5.11). The triangles and the rhombus are
the results of two measurements sets. The determination coeffi-
cients are 0.909 and 0.995 respectively. The first measurements
were affected by a large reverberation noise component coming
from the mitral valve opening.

The in-vivo measurement of CO is feasible once the calibration constant a1 is
known. Due to the anatomic variability of patients, a unique value of a1 for TTE
scanning cannot be defined. In fact, differences of gender, fat tissue, bone positions,
end other factors influence significantly the calibration curve. However, based on
in-vitro measurements, the CO could be measured by a TEE transducer. The TEE
probe is placed behind the heart almost in touch with the left atrium, so that the same
calibration and scanner setting as for the in-vitro calibration could be adopted. This
approach has not been validated yet, since a reliable validation in patients requires a
comparison with invasive thermo- or dye-dilution techniques. However, the promis-
ing in-vitro results, especially those obtained with a TEE probe, suggest pursuing
it.
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5.3 Pulmonary blood volume measurement

Based on the same principles, not only flow, but also volumes can be measured. The
measurement is based on the contrast transit time estimate, which is multiplied by the
flow for volume quantification. If different IDCs are measured in different sites, then
the blood volume between the measurement sites can be assessed as the product of
transit time times flow. Before presenting the measurement validation, the concepts
of Mean Transit Time (MTT) and Mean Resident Time (MRT), already introduced in
section 4.2.2, are investigated into details and related to the LDRW and FPT models
for volume measurements. Moreover, the application of a deconvolution technique
for the compensation of the injection function, which in reality is not a Dirac impulse
as assumed by the LDRW and FPT models, is introduced. In fact, the injection
function has effect on the estimation of the parameter µ in the models (rather than on
the estimation of the integral, see Remark in the end of section 5.3.2) and affects the
volume assessment.

5.3.1 Transit and resident time for volume measurements

The infinite tube model in Fig. (4.12), as for the derivation of the LDRW and the
FPT models, is adopted to derive a formula for the volume measurement. A carrier
fluid flows through the tube with a steady flow Φ. An indicator bolus is injected (fast
injection) at time t=0 into the tube. The volume to measure is defined as the tube
segment between the indicator injection and detection sections.

We define f (t)dt as the fraction of injected indicator that leaves the tube segment
in the time interval [t, t+dt]. It is assumed that the indicator may not pass more than
once through the detection section (FPT model hypothesis).

Due to the single passage hypothesis, the fraction of leaving bubbles corresponds
to the fraction of bubbles that appear at the detection section. Therefore, f (t) equals
the normalized indicator concentration that is measured at the detection site and is
given as in Eq. (5.24).

f (t) = C (t)
∞∫
0
C (τ )dτ

(5.24)

The fraction of indicator that has left the segment by time t is determined by F(t)
as in Eq. (5.25).

F (t) =
t∫
0

f (τ )dτ (5.25)
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The volume of fluid that enters the tube segment in the time interval [0,dt] is
Φ·dt and the fraction that leaves the segment by time t is Φ·dt·F(t). Therefore, the
volume of fluid that enters and leaves the tube segment in the time interval [0, t] is
given as in Eq. (5.26).

Φ

t∫
0

F (τ )dτ (5.26)

The difference between the entering and the leaving fluid volume in the time
interval [0, t] is then given as in Eq. (5.27).

Φt−Φ

t∫
0

F (τ )dτ (5.27)

Therefore, Eq. (5.27) expresses the volume of fluid that enters the segment in the
time interval [0, t] and is still in the segment at time t. For time t → ∞ all the fluid in
the segment is replaced by fluid that has entered for t≥0. Therefore, the total volume
V of the segment is given as in Eq. (5.28).

V = lim
t→∞Φ

⎛⎝t− t∫
0

F (τ )dτ

⎞⎠ (5.28)

Eq. (5.28) can also be formulated 7 as given in Eq. (5.29).

V = lim
t→∞Φ

⎡⎣t− [τ F (τ )]t0+
t∫
0

τ f (τ )dτ

⎤⎦= Φ

∞∫
0

τ f (τ )dτ (5.29)

Due to the definition of f (t) and the FPT hypothesis, the right term of Eq. (5.29)
represents the multiplication of the flow Φ times the MTT of the indicator, i.e., the
average time that the indicator takes to cover the distance between injection and de-
tection section. Moreover, due to the FPT hypothesis and Eq. (5.24), f (t) may be
represented by Eq. (4.28) (except for the coefficient m/Φ), which proves the conver-
gence of the integral in Eq. (5.29).

7The integration per parts of
t∫
0
τ f (τ )dτ allows replacing

t∫
0
F (τ )dτ in Eq. (5.28). In fact,

t∫
0
τ f (τ )dτ =

t∫
0
τdF (τ ) = [τ F (τ )]t0−

t∫
0
F (τ )dτ .
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In conclusion, the volume is given as in Eq. (5.30), where the MTT of the indica-
tor, which equals the first moment of the IDC, is given as in Eq. (5.31).

V = Φ ·MTT (5.30)

MTT=
∞∫
0

τ f (τ )dτ =

∞∫
0
τC (τ )dτ

∞∫
0
C (τ )dτ

(5.31)

The definition of the indicator MTT as the first moment of the IDC is appropriate
only under single passage hypothesis. In this case, the MTT corresponds to the MRT
of the indicator in the defined segment and equals µ in Eq. (4.28) [11]. In fact, the
bubble appearance time at the detection section also corresponds to the disappearance
time from the segment.

The LDRW model is more general and does not satisfy the hypothesis of single
passage of the indicator. As a consequence, the first moment of the model, which
still represents the MRT of the indicator in the tube segment [12, 16], differs from
the MTT. The MTT, which is defined as the average time that the indicator takes to
go from the injection to the detection site, is by definition equal to µ in Eq. (4.25).
In fact, in the LDRW model µ equals the time that elapses to cover the distance
between the injection and detection site at the carrier fluid velocity, i.e., the MTT
of the indicator. Instead, the first moment of the model, which corresponds to the
MRT and is derived in section 5.1.2, equals µ(1+1/λ). Therefore, the MRT exceeds
the MTT by the term µ/λ=2D/u2, i.e., twice the ratio between indicator diffusion
constant D and squared velocity of the carrier fluid u2. Large diffusion constants lead
to increased numbers of bubble passages through the detection site and, therefore, to
large differences between MRT and MTT.

In conclusion, when either the LDRW model or the FPT model is fitted to the
IDC, Eq. (5.30) corresponds to Eq. (5.32).

V = Φ ·µ (5.32)

Several techniques, as discussed in section 2.1 can be employed for the assess-
ment of the flow Φ.

5.3.2 Deconvolution and impulse response

The fluid-dynamic dilution system between contrast injection and detection is a linear
system. In fact, if two boluses of mass equal to αm and βm are injected (α,β ∈
R), the detected IDC, as from Eq. (4.25) or Eq. (4.28), equals αC(t) + βC(t). As
a consequence, the system can be described by an impulse response and both the
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models given in Eq. (4.25) and Eq. (4.28) can be considered as the system impulse
response.

Since both models assume an ideal bolus injection, which is modelled as a Dirac
function and differs from a real injection, a deconvolution technique can be adopted to
estimate the impulse response of the dilution system [191, 192]. Due to small SNR,
direct deconvolution techniques fail. A more detailed discussion on deconvolution
techniques is postponed to the next chapter (section 6.1), where the cardiac quan-
tification is based on a linear system identification method based on a deconvolution
algorithm.

A solution to overcome the low SNR problem is the employment of least square
techniques, such asWiener deconvolution filtering (see [193] pp. 337-348 and [194]).
The Wiener filter W (ω) is designed in the frequency domain with the hypothesis of
uncorrelated noise as given in Eq. (5.33) (a derivation of Eq. (5.33) is shown in sec-
tion 6.1). F∗ is the complex conjugated Fourier transformation of a real injection
function f (t), which is represented by a normalized (integral equal to 1) 0.8s rectan-
gular input, and S f f (ω), Shh(ω), and Snn(ω) are the injection-function, the impulse-
response, and the noise power spectrum respectively.

W (ω) = F∗(ω)

S f f (ω)+ Snn(ω)

Shh(ω)

(5.33)

Shh(ω) is estimated as the spectrum of the IDC model fit (without deconvolution)
while Snn(ω) is estimated as the spectrum of the difference between the IDC and the
fitted model. The measured IDC is filtered by the Wiener filter in Eq. (5.33) to obtain
the impulse response of the system between injection and detection. The resulting
impulse response estimate is fitted and interpreted by the models for the parameter
assessment.

The Wiener filter was tested by a specific simulation. LDRW curves were gener-
ated and convoluted with a rectangular injection function of 0.8s. The SNR was then
reduced by white noise addition as implemented in section 5.1.1 for the fitting sim-
ulation. The simulated IDCs were then filtered by the Wiener filter and fitted by the
LDRW model. Due to the Wiener deconvolution, the noise characterization changes,
so that the noise compensation in Eq. (5.6) is not valid and was not implemented
anymore. For each integer value of λ∈[1..10], a set of 1000 IDCs was generated with
SNR=20dB (noise-to-signal amplitude ratio equal to 0.1), which is a typical ratio for
real signals. The range of values for the parameter λ covers and exceeds the values
encountered in clinical practice.

The fitting results in terms of average percentage MTT-estimate (µ) error are
shown in Fig. (5.13). We may conclude that the use of deconvolution filtering leads to
more accurate MTT estimates. The standard deviation of the estimates equals 0.38%
with and without Wiener deconvolution. Fig. (5.14) shows a simulation example for
SNR=20dB and injection function f (t) equal to a rectangle of 2s.
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Figure 5.13: Wiener filter validation results. LDRW curves are generated
and convoluted with a rectangle (injection function) of 0.8s.
White noise is added to the curve and the SNR reduced to
20dB. 1000 different noise sequences are used and 1000 differ-
ent IDCs generated for each integer value of λ∈[1,10]. MTTs
are estimated with and without Wiener filtering, and the aver-
age MTT-estimate percent error calculated.

Figure 5.14: Example of IDC simulation for Wiener filter validation. The
plus-points represent the convoluted noisy IDC, which is de-
convoluted to estimate the original IDC.
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Remark
The convolution with a normalized rectangular function f (t) does not change the

integral of the IDC. In fact, for a continuous signal∫
t

[ f (t)∗h (t)]dt =
∫
t

∫
τ

f (τ )h (t− τ)dτdt =
∫
τ

∫
ξ

f (τ )h (ξ)dτdξ =
∫
ξ

h (ξ)dξ,

while for a discrete signal

+∞∑
k=−∞

[ f (k)∗h (k)]=
+∞∑

k=−∞

+∞∑
i=−∞

f (i)h (k− i) =

=
+∞∑

k=−∞

1

L

k∑
i=k−L

h (i) =
+∞∑

k=−∞

Lh (k)

L
=

+∞∑
k=−∞

h (k) .

As a consequence, the injection function does not influence the flow measurement
based on Eq. (2.6).

5.3.3 In-vitro and in-vivo volume measurements

Figure 5.15: In-vitro set-up for volume measurements.

The measurement of blood volumes by means of UCA dilution was tested and
validated in-vitro. A specific hydrodynamic system was built to produce different
water volumes as shown in Fig. (5.15). The system consisted of a flow generator (a
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calibrated Medtronic 550 bio-console centrifugal pump), a measurement water-filled
basin, a tube network that simulated the PBV, and a pressure stabilizer. The generated
flow, which was controlled by an electromagnetic flowmeter, passed the water-filled
basin through a very thin polyurethane tube. After the basin, the tube expanded into
a network of eight tubes and converged again into a single tube that passed back
through the basin. The hydrodynamic circuit was open in order to avoid UCA recir-
culation and the output static pressure was stabilized. The ultrasound measurements
were performed in the basin (see Fig. (5.16)). An ultrasound transducer was mounted
on the basin, so that both the tubes are simultaneously insonated.

Figure 5.16: Water-filled basin for ultrasonic measurements. Two thin
polyurethane tubes are intercepted by the ultrasound beam for
contrast quantification. The first tube (before the volume to
measure) is partially reinforced (covered, except for the ultra-
sound measurement section) by a thick rubber tube in order to
hold the pressure increase produced by high flows. The trans-
ducer is fixed on the basin in touch with water. It is isolated
from water by a thin latex film filled with conductive gel. The
bottom of the basin is covered by an ultrasound absorber layer
to avoid reverberation.

The transducer, a TTE Philips S3 probe, was fixed for stability and submerged
to optimize acoustic impedance matching. It was covered by conductive gel and
isolated from water by a thin plastic layer. The bottom of the basin was covered by an
absorbing layer to reduce acoustic reverberation. A Sonos 5500 ultrasound scanner
was used to generate B-mode videos. The scanner was set in power modulation with
the same setting as for the acoustic calibration and flow measurements in sections 4.1
and 5.2.
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Figure 5.17: In-vitro set-up for TTE volume measurements. Demonstra-
tion using an ATL Ultramark9� ultrasound system (Evoluon
palace, Eindhoven, November 2003).

A small bolus of UCAwas injected right after the pump to minimize disruption of
bubbles. The bolus consisted of 5ml of SonoVue� diluted 1:100 into saline (sodium
chloride 0.9%), which corresponds to 0.25mg of SonoVue�. With this dose, the
threshold of 12.5mg/L was never surpassed (see Fig. (4.2)). Therefore, as concluded
in section 4.1, the attenuation effect was negligible and the relation between UCA
concentration and backscattered acoustic intensity was linear. The passage of the
contrast bolus through the first tube (before the network) and the second tube (after
the network) was recorded by the ultrasound scanner. The B-mode digital records
were analyzed by software Q-Lab� (Philips Medical Systems) for acoustic quantifi-
cation.

A ROI was overlapped on each tube to quantify the acoustic intensity that was
backscattered by the contrast passage (see Fig. (5.18)). Therefore, two IDCs (one for
each tube) were generated. The IDCs were processed and fitted by the LDRW model
and the FPT model in order to estimate the MTT of the contrast between the first and
the second ROI.

The volume V between the two detection sites (before and after the tube net-
work in Fig. (5.15)), was estimated as given in Eq. (5.34), where the MTT difference
(∆MTT) between the two measured IDCs is multiplied times the flow Φ.

V = ∆MTT ·Φ = ∆µ ·Φ (5.34)
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Figure 5.18: Two B-mode frames showing the passage of the contrast bolus
through the first tube (left frame) and the second tube (right
frame). A ROI is placed on each tube for the acoustic intensity
measurement.

The IDC analysis system is implemented in Labview� and Matlab�, and runs
on a personal computer. Apart from the off-line acoustic densitometry of digital
records, also real-time video densitometry of analog video outputs of ultrasound
scanners can be performed.

The hydrodynamic system described in Fig. (5.15) was used to measure different
volumes and validate the method. The volume of the tube-network was changed by
clamping the tubes in specific sites. Four different volumes were defined: 310ml,
412ml, 625ml, and 1080ml. The volumes were measured for five different flows,
from 1L/min to 5L/min. Both the LDRW and the FPT models were used for the IDC
fitting (see Eq. (4.25) and Eq. (4.28)). The flow was measured by the electromagnetic
flowmeter that is combined with the pump (see Fig.(5.15)). The resulting volume
estimates are plotted in Fig. (5.19) for both the LDRW and the FPT model fits.

The percent standard deviation of the measurements with respect to the average
estimate (from the small to the large volume) is 2.1%, 3.2%, 0.8%, 0.7% for the
LDRW fits, and 2.2%, 2.2%, 1.1%, 1% for the FPT model fits. Fig. (5.20) shows the
average estimates over all the five flows using both models. The physiologic range for
PBV measurements is highlighted8 [82, 83]. The determination coefficient between
the real and the estimated volumes is larger than 0.999 for both the LDRW and the
FPT model fits. Both approaches produced very stable results in a wide range of
flows. However, the FPT model volume estimates shows an average overestimation
of 3.2% with respect to the LDRW model estimates, which are very accurate in the
physiological PBV range. This is explained by the single passage hypothesis of the
FPT model. In fact, since both models show excellent IDC fits (determination co-
efficient larger than 0.9), the estimates for the parameter µ as derived from the FPT
model are very close to the MRT estimates from the LDRW model (see Fig. (5.21)).

8The provided PBV values are non-indexed, i.e., they are not divided by the BSA index (see CI in
section 2.1).
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Figure 5.19: In-vitro flow measurements for different flows using the LDRW
(upper) and the FPT (lower) model fits.

Figure 5.20: Average volume estimates over five different flows using both
the LDRW and the FPT model fits. The line indicates the real
volume. In the middle of the plot, the expected physiological
PBV range is highlighted.
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Figure 5.21: Volume measurements by FPT-model MTT estimates and
LDRW-model MRT estimates.

As a consequence, the overestimation is quantified by the term µ/λ from the LDRW
model, which is related to the diffusion-to-convection ratio. When the diffusion com-
ponent is larger, the difference between MTT and MRT is more pronounced.

The physical interpretation for the MTT-MRT difference in the UCA dilution
context stands in the low MI insonation. The adopted 0.1 MI does not produce a
significant bubble disruption rate. As a consequence, the FPT model hypothesis is
not realistic.

Due to a problem in the volume network, the flow in the two main brunches of the
largest volume (1080ml) was unbalanced. As a consequence, the resulting IDC is the
sum of two different IDCs with different MTT. The fit of such a curve, as confirmed
by specific simulation, provides with a MTT estimate that is close to the smallest
MTT. This might be the reason for the underestimation of the largest volume with
both models. However, a volume of 1080ml is beyond the physiological boundaries
for the PBV.

A similar in-vitro experimentation was also performed using a TEE probe di-
rectly submerged into water together with the two polyurethane tubes as shown in
Fig. (5.22). Two different volumes of 410ml and 700ml were realized by using one
and two artificial lungs (COBE� oxygenators of 280ml) in parallel. The scanner
was a Sonos 4500 and the setting was the same fundamental harmonic mode as for
the calibration in Fig. (4.6). Since the injected dose was a SonoVue� bolus of 2.5mg
(10 times larger than the usual dose), the effect of the video logarithmic compression
was evident and the calibration formula in Eq. (4.4) had to be applied before the IDC
interpolation.

Remark Referring to Eq. (4.4), a1C(t) + a2 is equal to 10
G(t)
a0 . Therefore, the

only calibration parameter that influences the MTT estimate, which depends on the
parameters λ and µ of the LDRW and FPT models, is a0.
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Figure 5.22: In-vitro set-up for TEE volume measurements.

Figure 5.23: LDRW model fits of video IDCs detected before and after the
oxygenators. The left couple of IDCs is not calibrated while
the right IDCs are calibrated by the model in Eq. (4.4) and,
therefore, result in better LDRW fits.

Fig. (5.23) shows the LDRW fits of a couple of experimental curves (before and
after the artificial lungs) with and without calibration. As expected, the first IDC
(before the oxygenators) shows a larger amplitude with respect to the second IDC
(after the oxygenators). As a result, the first IDC was more affected by the log-
compression, and the use of calibration improved the determination coefficient of the
LDRW model fit from 0.97 to 0.98.
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In general, the artificial lung traps part of the contrast micro-bubbles, which
was the reason for the lower contrast concentrations of the second IDCs. More-
over, the larger micro-bubbles (about 10µm), which give the better response to ultra-
sounds [130], have a larger probability of being trapped in the oxygenator. However,
for larger flows (beyond 2L/min), the second IDC showed a larger signal with re-
spect to the first one. This was caused, according to the bubble dynamic models
in section 3.2, by the pressure increase due to the resistance introduced by the oxy-
genator into the hydrodynamic system. In fact, a pressure P0 increase leads to an
increase of elasticity constant (s in Eq. (3.26)) and resonance frequency (Eq. (3.28))
of the micro-bubbles [174]. The effects of this pressure increase were also recogniz-
able from the stretching of the first polyurethane tube in the water-filled basin, which
made this set-up limited to low flow measurements and eventually replaced by the
tube-network set-up showed in Fig. (5.15). The acoustic backscatter dependency on
pressure-flow variations makes the volume measurement set-up unsuitable for flow
measurements, where the absolute relation between acoustic backscatter and contrast
concentration must be determined.

The results based on the LDRW and FPT model fits showed a mean estimated
value over six measurements flows (flows ranging from 0.5L/min to 3L/min) equal to
402.9ml and 409.2ml for the single oxygenator and 681.1ml and 684.2ml for the
double-oxygenator volume respectively. The standard deviations were 2.1% and
1.6% for the single volume and 8.2% and 3.5% for the double volume. The small
negative bias of the mean value was caused by some air bubbles that were trapped in
the oxygenator.

Figure 5.24: TTE four chamber view of the heart after a peripheral injection
of a 0.25mg bolus of SonoVue�. On the left, the opacification
of the right side of the heart is shown, while later, on the right,
the left side of the heart is opacified. Two ROI are placed in the
right ventricle and the left atrium for the IDC measurements.
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Figure 5.25: LDRW fits of two IDCs recorded from the right ventricle and
the left atrium of a patient after an injection of 0.25mg of
SonoVue� diluted in 5ml of saline.

The application of the system in humans requires the use of specific cardiac views
where more IDCs can be measured simultaneously. A four chamber view, for in-
stance, allows the measurement of four IDCs, one for each chamber, leading to an
easy assessment of pulmonary, central, intra-thoracic, and systemic blood volumes
(see section 2.3).

Fig. (5.24) shows the application of the system to a real patient. A TTE four-
chamber view is used for the measurement. The PBV is assessed by placing two ROI
in the RV and LA. The bolus (0.25mg of SonoVue� in 5ml of saline) is injected
into a peripheral vein (arm). The CO is assessed by aortic Doppler time-integration
technique (see section 2.1.4). The RV and LA IDCs are measured and fitted by the
models (see Fig. (5.25)). The�MTT is estimated from the IDCs and multiplied times
the CO to obtain the PBV estimate. Fig. (5.26) shows the measured PBV in a group
of 20 patients with different pathologies. The measurements were performed with a
Sonos 5500 ultrasound scanner in power modulation.

Except for few patients (1, 12, 13, and 14), the difference between LDRW and
FPT model estimates was minimal. In fact, the cardiac valves reduce the number
of bubble passages through the detection sites (cardiac chambers) and the difference
between MTT and MRT is minimal. In general, the worse the cardiac conditions,
as diagnosed by cardiologists, the larger the PBV. In fact, all the patients with large
PBV are heart failure patients (candidates for bi-ventricular pacing). This preliminary
result corresponds to the expectations. In fact, a decrease of left ventricular efficiency
could be compensated by a pulmonary blood volume (and pressure) increase.
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Figure 5.26: PBV measurements in patients. Both the LDRW and FPT
model estimates are shown.

With respect to classic trans-pulmonary techniques (see section 2.3), we are able
to exclude the right atrium, left ventricle, and aortic volume from the PBV measure-
ment, resulting in a more accurate estimate.

In conclusion, the blood volume assessment by use of UCA dilution is feasible
and accurate. The measurement can be performed with minimal invasiveness. As a
consequence, this technique allows the measurement of some important diagnostic
clinical parameters that cannot be measured without the use of very invasive tech-
niques. Physiological processes can be studied more in detail resulting in increased
knowledge, for instance, of the time course of chronic heart failure patients with
minimal risk and discomfort for the patient and, possibly, new therapeutic strategies.

Moreover, this technique opens new possibilities for studying the relation be-
tween blood volumes and cardiac diseases. The characterization of this relation
is already in progress and some preliminary results concerning the correlation be-
tween PBV decrease and EF increase during cardiac resynchronization are discussed
in chapter 8.

Further research will also concern the use of the recirculation curve fit in order to
assess the total circulating blood volume, which could be used to normalize the value
of the other partial volumes. Fig. (5.27) shows the result of an automatic LDRW fit of
the first and the second passage of the contrast. The interpolation of the recirculation
is implemented as a standard LDRW fitting (as described in section 5.1.1) applied to
the subtraction of the LDRW fit of the first passage curve to the complete IDC.
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Figure 5.27: Example of right ventricle IDC with evident recirculation of the
contrast. The LDRW-model curve fit of the first passage IDC is
shown together with the LDRW fit of the second passage IDC,
i.e., the recirculation.

5.4 Ejection fraction measurement

Based on the LDRW fit of the IDC and the concepts reported in section 2.2, a novel
approach for the measurement of EF is developed. EF can be measured from the
down-slope of the ventricular IDC if the injection is performed directly into the ven-
tricle within a diastole, resulting in a very invasive practice. In fact, Eq. (2.19) and
Eq. (2.21) are valid when the contrast is ejected from the ventricle with no incoming
contrast.

However, we could still perform a minimally-invasive peripheral intra-venous
injection and consider the limit of the LV IDC fit for t going to ∞. For large t ,
we might suppose that no contrast is present in the ventricular inflow, so that the
hypothesis for Eq. (2.19) and Eq. (2.21) is fulfilled. Therefore, once the IDC is
interpolated by the LDRW model, the EF can be calculated as the limit for t going to
∞ of Eq. (2.19). The result is given as in Eq. (5.35), where ∆t is the pulse period.

EF= lim
t→∞

[
1− C(tn+1)

C(tn)

]
= lim

t→∞
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√

tn
tn+1

e
λ
2

[(
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+ µ
tn

)
−
(
tn+1

µ
+ µ
tn+1

)]]
= 1− e

−λ∆t
2µ

(5.35)
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Eq. (5.35) has the same structure as Eq. (2.21), where the time constant τ is now
given by the term 2µ/λ. With reference to the LDRW fitting parameters in Eq. (5.2),
the EF, which in the IDC context is better referred to as FEF (see section 2.2), is given
as in Eq. (5.36).

FEF= 1− eP2∆t (5.36)

Figure 5.28: EF measurements by IDC exponential and LDRW fit compared
to bi-plane echographic estimates.

The method was tested both in-vitro, using the set-up in Fig. (5.9) and Fig. (5.11),
and in-vivo, comparing the measurements to bi-plane echographic measurements (see
section 2.2) with contrast opacification. The in-vivo measurements were performed
on the LV, since the RV EF cannot be quantified by geometric echocardiographic
techniques. The mitral insufficiency was not significant, so that EF and FEF were
approximately equal.

As shown in Fig. (5.28), the results were not satisfactory. The FEF assessment
showed a significant underestimation for increasing EF. Probably, due to diffusion,
the hypothesis of out-flowing contrast with no inflow is never fulfilled. However,
the measurements made by direct exponential fitting on the IDC down-slope show
an even more significant underestimation. The same conclusions are derived after
in-vitro validation using the set-up in Fig. (5.9) and Fig. (5.11).

An alternative approach for the EF assessment based on a peripheral intravenous
UCA bolus injection is proposed in the next chapter. It makes use of the estimation
of the ventricular impulse response. This efficient technique results in more accurate
measurements, which are independent on the injection site and function.
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Chapter 6

Dilution system identification

...nil sine magno vita labore dedit mortalibus (Horatius).

This chapter proposes an alternative approach to that presented in the previous
chapter for the measurement of EF and blood volumes. The dilution system is treated
and interpreted as a linear system. The impulse response of the system between two
indicator detection sites is estimated (system identification) by means of a decon-
volution technique. The estimated impulse response is then interpolated by specific
models for the measurement of EF and volumes. Section 6.1 introduces to the decon-
volution theory for system identification while section 6.2 and section 6.3 apply the
deconvolution approach to EF and blood volume measurements respectively.

6.1 Deconvolution techniques

Figure 6.1: Scheme of a linear system characterized by its impulse response
h(t) (or transfer function H(ω)). No noise is introduced in
scheme a while the noise spectrum N (ω) is added in b.

The fluid-dynamic dilution system between contrast injection and detection is a
linear system. In fact, if two boluses of mass equal to αM and βM are injected (α,β ∈
R), the detected IDC, as from all the IDC models (see section 4.2), equals αC(t)+
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βC(t). Therefore, once a couple ultrasound intensity curves (input and output of the
dilution system) are transformed into IDCs by compensating for all the non-linear
effects, they can be used as inputs of a deconvolution algorithm for the estimation of
the impulse response of the dilution-system between the detection sites [192].

In general, if f (t) and g(t) are the input and output functions of a linear system
as shown in Fig. (6.1a), g(t) is the result of a convolution operation between the input
f (t) and the system impulse response h(t) (g(t) = h(t)∗ f (t)). The impulse response
h(t) characterizes the linear system. In fact, if f (t) is an impulse (Dirac function),
h(t) = g(t). However, when f (t) is not an impulse, h(t) can still be recovered from
f (t) and g(t) by a deconvolution operation. g(t) can be expressed in discrete terms
as given in Eq. (6.1).

g (n) = f (n)∗h (n) =
∞∑

i=−∞
f (i)h (n− i) (6.1)

The aim of a deconvolution operation is the determination of f̃ (n) so that h (n)
is given as in Eq. (6.2).

h (n) = f̃ (n)∗ g (n) =
∞∑

i=−∞
f̃ (i)g (n− i) (6.2)

The deconvolution can be solved directly as an inversion of Eq. (6.1). If f (n)
lasts L samples, the recursive solution is given as in Eq. (6.3), for n ∈ [−1..∞).

h(n+1) =
g(n+1)−

L∑
i=1

f (i)h (n+1− i)

f (0)
(6.3)

When the impulse response h(n) represents a real system, it must be causal, i.e.,
h(n) = 0 for n < 0.

In frequency domain, a deconvolution is realized by a simple mathematical inver-
sion. In fact, as a convolution becomes a multiplication, a deconvolution becomes a
division by F (ω) as given in Eq. (6.4), where ω is the angular velocity in radians per
second (ω = 2π f ). The same can be expressed in the z-domain, with z = e j2π f T (T
sampling period).

g(t) = f (t)∗h (t)
F→ G (ω) = F (ω)H (ω) (6.4)

⇓
H (ω) = G (ω)

F (ω)

F−1→ g (t)∗ f̃ (t) = h (t) , f̃ = F−1
(

1

F(ω)

)
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UCA IDC measurements are influenced by several noise sources, such as bad
mixing of the contrast, acoustic reverberation, backscatter oscillations due to pres-
sure variations, bubble disruption due to ultrasound pressure, patient-movement and
blood-acceleration artifacts, and contrast recirculation, resulting in very noisy IDCs.
Due to the small SNR, direct deconvolution techniques based on either matrix in-
version in time domain1 or spectrum inversion in frequency domain fail [191, 192].
In fact, although these direct deconvolution techniques are rather simple, difficulties
arise as soon as the SNR decreases.

In frequency domain, as shown in Fig. (6.1b), the signal to be deconvoluted is
given as G(ω) = F (ω)(H (ω)+ N (ω)). The result of a direct deconvolution in fre-
quency domain, i.e., the input response estimate Ĥ (ω), is given as in Eq. (6.5).

Ĥ (ω) = G (ω)

F (ω)
= H (ω)+ N (ω)

F (ω)
(6.5)

The division of the noise spectrum N (ω) by F (ω) generates a high-frequency
noise amplification, since the noise band is usually larger than the signal F (ω) band.
Especially for IDC applications, F (ω) contains mainly low frequency components
and N (ω) is a broad-band noise. As a consequence, the high-pass filter F−1 (ω)

works as a noise amplifier and the deconvolution operation, as shown in Fig. (6.2),
becomes very unstable.

Figure 6.2: Simulation of an unstable direct deconvolution for a low noise
IDC. f (t) is generated as a LDRW function, it is convoluted to
a rectangular h(t). After white noise addition (left plot), result
is deconvoluted in order to estimate f (t) (right plot).

1A convolution can also be represented as the matrix product between the input vector f and a
circular matrix [H ] whose lines contain the impulse response h(n), i.e., g = [H ] f . In this context, the
deconvolution in Eq. (6.3) can be expressed as a matric inversion.
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Apart from the direct deconvolution, many of the proposed deconvolution tech-
niques are iterative ones. The first simple approach, studied by van Cittert in the
early thirties, builds a correction term that is proportional to a defined error [195].
This error is given as the difference g (t)− hi (t)∗ f (t), where hi (t) is the estimate
of the impulse response made at the ith cycle. Therefore, the final formula is given as
in Eq. (6.3).

hi+1 (t) = hi (t)+α [g (t)−hi (t)∗ f (t)] (6.6)

α can be equal to one, but should be decreased for increasing noise power. How-
ever, the van Cittert’s technique, which together with the previous techniques can be
classified among the linear approaches, is not robust enough to treat the typical SNR
of measured IDCs. Fig. (6.3) shows a van Cittert’s deconvolution for an IDC with
high SNR (40dB). The noise level, which is very low in the original IDC, is extremely
amplified by the deconvolution operation.

Figure 6.3: Simulation of an unstable van Cittert deconvolution for a low
noise (SNR = 40dB) IDC. f (t) is generated as a LDRW function
convoluted to a 1s rectangular h(t) with white noise addition.
The result is deconvoluted in order to estimate f (t).

Beyond the linear-deconvolution techniques, other non-linear recursive algorithms
show very interesting results. In this context, we present two algorithms that give
very accurate results even in case of low SNR. Based on the maximum likelihood,
these techniques maximize the conditional probability defined by the Bayes formula
as given in Eq. (6.7).

P ( f ∗h|g) = P (g| f ∗h) P ( f ∗h)
P (g)

(6.7)
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If the statistics P (h) is assumed to be a Poisson statistics2, then P ( f ∗h|g) is
maximized by the Richardson-Lucy algorithm3 (1972), while if P (h) is assumed
to be a Gaussian statistics, then P ( f ∗h|g) is maximized by the Muller algorithm
(1997). Eq. (6.8) and Eq. (6.9) show the Richardson-Lucy and the Muller algorithm
respectively.

hi+1 (t) = hi (t)

[
f (−t)∗ g (t)

f (t)∗hi (t)
]

(6.8)

hi+1 (t) = hi (t)

[
g (t)∗ f (−t)

f (t)∗hi (t)∗ f (−t)
]

(6.9)

Since the LDRW statistics includes a skewness parameter, it is closer to a Poisson
distribution than to a Gaussian one.

Figure 6.4: Simulation of an Richardson-Lucy deconvolution. The continu-
ous smooth line is the result of a convolution between a 1s rect-
angle and a LDRW function. The overlapped noisy line is the
result of the noise addition and the plus signal is the deconvolu-
tion result. The deconvolution result is shown without (left plot)
and with (right plot) the employment of a pre-filter.

As clear from the inversion of F (ω) in Eq. (6.4), the treatment of noisy signals
becomes more unstable as the noise contains high frequency components. To over-
come this problem, it is possible to apply a low-pass filter before the deconvolution.
Pre-filtering the high frequencies of the signal leads to a significant improvement of
the deconvolution stability. Fig. (6.4) shows the result of a Richardson-Lucy decon-
volution with and without a pre-filter. As for the previous simulations, the deconvo-
lution input g(t) is generated as LDRW function that is convoluted to a normalized

2Poisson distribution: P (t,λ) = e−λλt

t! .
3The Richardson-Lucy technique is also implemented in the Hubble Telescope to compensate the

spread point function of the optical system.
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rectangle of 1s and summed to white noise. The use of a low-pass pre-filter results in
a significant improvement of the SNR.

An alternative solution to the deconvolution issue is the employment of a least
square technique, such as a Wiener deconvolution filtering [41, 186, 191, 192, 194,
196, 197]. It is a least square estimation of the optimum deconvolution filter w(t).
This method aims to minimize the L2 distance d (g (t)∗w(t) ,h (t)), which is defined
as d (w) = ∫ (g (t)∗w(t)−h (t))2 dt .

The minimum distance is given by the zero crossing of the derivative of d with
respect to w. It is a solution of the equation d ′(w) = 0, which can be expressed as
given in Eq. (6.10), where Rhg and Rgg represent the correlation between h (t) and
g (t) and the autocorrelation of g (t) respectively [186, 194].

Rhg(t) = w(t)∗ Rgg(t) (6.10)

Eq. (6.10) is referred to as normal Wiener-Hopf equation. For uncorrelated noise,
Rhg (t) = Rhn (t)+Rhh (t)∗ f (−t) = Rhh (t)∗ f (−t) and Rgg (t)= 2Rhn (t)∗ f (−t)+
R f f (t) ∗ Rhh (t)+ Rnn (t) = R f f (t) ∗ Rhh (t)+ Rnn (t). Therefore, in frequency do-
main, W (ω) is given as in Eq. (5.33) in section 5.3.2, where S f f (ω), Shh(ω), and
Snn(ω) are the input IDC, the system impulse response, and the noise power spec-
trum respectively.

Eq. (5.33) corresponds to a direct deconvolution filter in frequency domain except
for the term Snn(ω)/Shh(ω), which corresponds to the SNR spectrum. An application
simulation of this filter is shown in Fig. (5.14), where the input function f (t) is a
0.8s normalized rectangle, Shh(ω) is approximated by the spectrum of the LDRW fit
of g(t), and Shh(ω) is approximated by the spectrum of the difference between g(t)
and its LDRW fit.

In general, when the input function is known, such as for instance the rectangle
that models the injection function, the performance of theWiener and the Richardson-
Lucy deconvolution are comparable. However, when the input function is also a mea-
sured noisy IDC, the Richardson-Lucy algorithm shows a significant convergence
time increase as well as a limited robustness to small SNR. As a result, we decided
to design a least square deconvolution algorithm based on a Wiener filter.

6.2 Ejection fraction measurement

As explained in sections 2.2 and 4.2.1, the EF can be measured by means of Eq. (2.21)
from the LV IDC exponential fit after a fast bolus injection in the ventricle during
diastole (Holt method [75]). In fact, the LV IDC after a fast bolus injection, which
can be modelled as a Dirac impulse, corresponds to the LV dilution system impulse
response, and is well modelled by a mono-compartment model.
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Based on the presented theory, a new minimally-invasive indicator dilution tech-
nique for EF quantification is proposed. It is based on a peripheral injection of an
ultrasound contrast agent bolus. The LA and LV acoustic intensities are recorded
versus time by TTE. The measured curves are corrected for attenuation distortion
and processed by an adaptive Wiener deconvolution algorithm for the estimation of
the LV impulse response, which is interpolated by a mono-compartment exponential
model for the EF assessment. This technique, as all the indicator dilution techniques,
measures Forward Ejection Fraction (FEF), which excludes regurgitant volumes (see
section 2.2).

Section 6.2.1 presents a solution to compensate for the attenuation between LV
and LA. Although in the adopted concentration range the attenuation is usually neg-
ligible, EF measurements are strongly dependent on the IDC shape and, therefore,
sensitive to any minimal non-linearity. Moreover, the presented deconvolution the-
ory is based on the linear-system theory, which requires the linearity of the system
by definition. After the system is linearized, a Wiener deconvolution scheme for EF
measurements is proposed in section 6.2.2. Some validation results in patients are
shown in section 6.2.3.

6.2.1 Attenuation compensation

After the LA and LV acoustic intensity curves are measured (see Fig. (6.5) and
Fig. (6.6)), a deconvolution technique could estimate the impulse response of the
system between the two sites (LV dilution system identification). However, a strict
requirement is the linearity of the system. Although the contrast dilution system is
linear, the relation between measured acoustic intensity and real contrast concentra-
tion is distorted by several non-linearities.

In order to ensure a linear relation between contrast concentration and acoustic
backscatter, the injected dose of contrast is very small (0.5mg of SonoVue�). In
fact, as discussed in section 3.2 and section 4.1, the integrated acoustic backscatter
is linearly related to contrast concentration in the low-concentration range. However,
also according to experimental measurements, a minimal attenuation effect is recog-
nizable between LV and LA intensity curves [98, 140, 143, 145]. While the LV ROI
is near the transducer, the LA ROI is beyond the LV and is detected by ultrasonic
waves that pass twice through the contrast-filled LV (see Fig. (6.5)). Consequently,
as shown in Fig. (6.6), the LA acoustic backscatter is attenuated and the LA intensity
curve is lower than the LV curve.

The attenuation effect on the LV acoustic intensity curve is approximately con-
stant (invariant with time), since it is mainly due to the tissue between the transtho-
racic transducer and the LV apex. Such an effect does not influence the linearity of
the relation between contrast concentration and acoustic intensity. Non-linearities
are introduced by the attenuation between LV and LA ROI. As a consequence, the
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Figure 6.5: Trans-thoracic four-chamber view. Two ROIs are placed on the
LV and LA for the IDCmeasurement. A simplified representation
of the ultrasound wave paths to the LV and LA ROI is shown
together with the distance difference r from the transducer.

Figure 6.6: LA and LV acoustic intensity curves. The LA curve shows a
lower intensity due to the LV attenuation effect.
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attenuation of the LV acoustic intensity is neglected and the attenuation effect on the
LA intensity curve can be compensated by exploiting the information derived from
the LV acoustic intensity curve.

With reference to Eq. (4.2), the acoustic intensity decay between LV and LA due
to attenuation is described by an exponential relation as given in Eq. (6.11), where
ÎL A and IL A represent the acoustic intensity received from the LA with and without
attenuation respectively (IL A = I0 (β +∆β)), at is the total attenuation coefficient,
and r is the distance between the LA and LV ROI.

ÎL A = IL A · e−4at r (6.11)

The attenuation coefficient at is the sum of two terms (at = a+∆a): the station-
ary attenuation coefficient a due to physiological structures (tissue and blood) and
the non-stationary attenuation coefficient ∆a due to diluted contrast. The standard
value for a, which is used to estimate derated pressure values in tissue, is equal to
0.3dB·cm−1 ·MHz−1 [96]. For small contrast concentrations, the attenuation coeffi-
cient ∆a is linearly related to the contrast concentration (see section 3.2). Therefore,
∆a is linearly related to the LV contrast concentration CLV (∆a = k1CLV ). Due to
the constant attenuation of the LV acoustic intensity ILV , the relation between CLV

and ILV is linear (CLV = k2 ILV ) and ∆a can be represented as a linear function of
ILV . With k = 4k1k2r , Eq. (6.11) becomes as given in Eq. (6.12).

ÎL A(t) = IL A(t) · e−(4ar+k ILV (t)) (6.12)

Since a and r are known, Eq. (6.12) contains only three unknowns, which are
the constant coefficient k and the non-attenuated intensities IL A and ILV . In order
to estimate IL A, two conditions have to be added. The first condition concerns the
ratio b between the peak concentration in the LV and LA. This condition can also
be expressed as ILVmax = bILAmax , where IL Amax and ILVmax represent the maxima of
the LA and LV intensity curves without attenuation. The second condition is derived
from the assumption of negligible attenuation of the LV acoustic intensity and is
expressed as ILV = ÎLV . Combining these two conditions with Eq. (6.12), IL A is
derived from the measured (attenuated) intensities ÎL A and ÎLV as given in Eq. (6.13).

IL A(t) = ÎL A(t)e
4ar ·

(
ÎLVmax e

−4ar

b ÎL Amax

)( ÎLV (t)
ÎLVmax

)
(6.13)

The distance r is usually fixed to 5cm and the ultrasound frequency is 1.9MHz.
As a result, ar = 0.328. The ratio between peak concentrations in the LV and LA
is difficult to determine. However, the final FEF measurements show reliable results
when an equal peak concentration is considered. Therefore, the peak concentration
ratio b is fixed to 1. Further research could include a specific experimentation for an
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accurate assessment of the concentration ratio b and its dependency on physiological
parameters4.

Figure 6.7: The LA and LV acoustic intensity curves in Fig. (6.6) after com-
pensation for the LV attenuation effect.

Eq. (6.13) expresses the LA acoustic intensity curve without attenuation IL A as a
function of attenuated measurements, therefore, it allows compensating for the atten-
uation effect on the measured LA intensity curve ÎL A as shown in Fig. (6.7). After
compensation, both the LA and LV intensity curves are linearly related to the con-
trast concentration and, therefore, they are referred to as IDCs. The resulting IDCs
are suitable to be processed for the LV impulse response estimation.

6.2.2 Wiener deconvolution scheme

The LV impulse response power spectrum Shh(ω) can be derived from the exponen-
tial model in Eq. (4.6) and expressed as C2

0τ
2/(1+ τ 2ω2). Due to the broad-band

characteristic, the noise power spectrum Snn(ω) can be approximated by a constant
N 2 (white noise, see also section 5.1.1). As a result, Eq. (5.33) can be expressed as
given in Eq. (6.14).

W (ω) = F∗(ω)

S f f (ω)+ N2(1+τ 2ω2)

C2
0τ

2

(6.14)

4Interesting studies investigated, for instance, the relation between attenuation and hematocrit [198].
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Figure 6.8: Scheme of the implemented adaptive Wiener deconvolution al-
gorithm.

An adaptive version of the filter is realized as shown in Fig. (6.8). An iterative
process minimizes the L2 distance d(g(t), f (t)∗ ĥ(t)) by changing the parameters τ 2

and N 2/C2
0 of the Wiener filter in Eq. (6.14). The adopted minimization algorithm is

the Nelder-Mead Simplex Method [199].

Especially for low SNR, the algorithm shows long convergence time. Therefore,
a sub-optimal design of the Wiener filter is considered. The SNR is assumed to
be constant [196, 197, 200], so that iterations only involve the optimization of one
parameter. In addition, a FIR (Finite Impulse Response) low-pass pre-filter made
of 5 taps (about 1/4 of the cardiac cycle for sampling frequency equal to 20Hz) is
applied to both g(t) and f (t) in order to reduce the high frequency noise components
before deconvolution. Several pre-filters have been tested, however, larger pre-filters
do not lead to further improvements.

The adaptive Wiener filter is applied to the measured LV IDC to estimate the LV
impulse response, which is fitted by the exponential mono-compartment model as
shown in Fig. (6.9) and interpreted by Eq. (2.20) for the FEF estimate. In fact, the LV
impulse response that is estimated after the attenuation compensation in Eq. (6.12)
and the deconvolution filter in Fig. (6.8) fulfills the requirements for the application
of Eq. (2.20). The exponential model is fitted to the impulse response down-slope by
a multivariate linear regression in the logarithmic domain. It is fitted between 80%
and 10% of the impulse response peak amplitude (see Fig. (6.9)).

The final design of the deconvolution filter was tested by specific simulations. As
in section 5.1.1, we defined the SNR as 20log(A/N ), where A is the amplitude of the
signal (IDC) and N is the noise amplitude. The noise was assumed to be white, with
an amplitude (standard deviation) that was linearly proportional to the signal ampli-
tude (stationary SNR). The input IDC f (t) was generated according to the LDRW
model. White noise was added to obtain SNRs equal to 10dB, 15dB, 20dB, and ∞.
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An SNR smaller than 15dB is never measured in practice (see Fig. (6.10)). f (t)
was then convoluted with a mono-compartment impulse response (exponential decay
h(t)) to obtain the output IDC g(t). White noise was also added to g(t) and the same
SNRs as for f (t) were generated.

Figure 6.9: LV impulse response as derived by Wiener deconvolution ap-
plied to the IDCs in Fig. (6.7). The exponential model fits the
curve along the down-slope between 80% and 10% of the peak
amplitude.

Figure 6.10: Example of simulated input-output IDCs for SNR=15dB and
FEF=50%.
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The time constant τ of the mono-compartment impulse response was varied in
order to generate FEFs going from 10% to 80%, which cover the real application
range. Fig. (6.11) and Fig. (6.12) show the simulation results in terms of average
values and standard deviations over 1000 different noise sequences for each SNR
and FEF.

The algorithm shows robustness even in case of very low SNR. The correlation
coefficients are 0.9964, 0.9993, 0.9999, and 1 for SNR going from 10dB to∞. How-
ever, for large FEF, an average underestimation is recognizable for low SNR.

Figure 6.11: Simulation results. Percent FEF average estimates for different
SNR and FEF% over 1000 different noise sequences.

Figure 6.12: Simulation results. Percent standard deviations (SD%) for dif-
ferent SNR and FEF% over 1000 different noise sequences.
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6.2.3 In-vivo measurements

The feasibility of the measurement was tested in patients. A 10ml bolus of SonoVue�
contrast agent diluted 1:100 into saline (0.9% NaCl) was injected intravenously and
detected in B-mode by an ultrasound scanner Sonos 5500 (Philips Medical Systems).
A transthoracic S3 probe was positioned to show a four-chamber view. Software Q-
Lab� (Philips Medical Systems) for acoustic quantification was used to measure the
acoustic intensity curves. Two ROIs were placed on the LA and LV for the acoustic
intensity curve measurements.

The scanner setting was the same power modulation mode as for the in-vivo blood
volume measurements in section 5.3. The measured acoustic intensity curves were
transformed into IDCs by attenuation compensation and analyzed off-line for the FEF
assessment. The analysis was implemented on PC using both Labview� (National
Instruments) and Matlab� (The MathWorks) software.

A group of 20 patients with EF going from 10% to 70% and no significant mitral
insufficiency (EF � FEF) was selected. FEF estimates were compared to EF mea-
surements obtained by echographic bi-plane method on two- and four-chamber views
with contrast opacification. The average over three EF measurements was considered
as the reference value to validate the FEF estimates.

Figure 6.13: In vivo results. FEF estimates compared to EF estimates by bi-
plane echocardiographic method after contrast opacification.

This preliminary study on 20 patients shows a correlation coefficient equal to
0.93 between FEF and EF estimates. The results are presented in Fig. (6.13).

Fig. (6.14) shows the Bland-Altman plot of the two compared techniques [17].
The bias equals 1.6% and the standard deviation (SD) equals 8%. Taking into ac-
count that comparisons between different EF measurement techniques always show



6.2 Ejection fraction measurement 143

Figure 6.14: Bland-Altman plot of the EF and FEF estimates by dilution and
bi-plane echographic methods.

Figure 6.15: The same measurement as in Fig. (6.13) without use of decon-
volution. The FEF is directly measured from the LV IDC expo-
nential fit. The results show an evident underestimation.

significant standard deviations (usually larger than 15% [18, 67]), these preliminary
results are promising and prove the feasibility of the method.

Fig. (6.15) shows the FEF estimates using the exponential fit of the measured LV
IDC without deconvolution. As expected, there is a large FEF underestimation. In
fact, since the contrast bolus is injected in an arm vein, the hypothesis of fast injection
in the LV for the application of Eq. (2.20) is not fulfilled.

A very interesting use of the FEF estimation could aim to the quantification of
Regurgitant EF (REF) (see section 2.2), i.e., the fraction of Ved that is ejected back
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in the atrium due to mitral valve insufficiency. Since geometrical EF measurements
are the sum of FEF and REF, the difference between EF estimates, made by any ac-
curate geometrical approach, and indicator dilution FEF estimates, made for instance
by echo-contrast, provides with REF estimates. However, to be more specific, this
technique does to allow distinguishing between mitral and aortic regurgitation.

Another advantage of using the contrast dilution approach for FEF assessments
is represented by the simple and direct application of the method for RV FEF mea-
surements, which, as discussed in section 2.2, are difficult to obtain by geometrical
measurements.

6.3 Pulmonary blood volume measurement

The same dilution system identification approach can be used for volume measure-
ments. In fact, the impulse response of the dilution system between two different
measurement sites is the IDC that would be measured in the second site if the contrast
injection were performed as a mathematical impulse in the first site. Therefore, once
the system is linearized by compensating for the nonlinear distortions introduced by
the measurement system (see section 6.2.1), the estimated impulse response can be
analyzed for the measurement of the volume that is bounded between the two detec-
tion sites.

Figure 6.16: In vitro volume measurement application. The measured input
and output IDCs (left plot) are shown together with the result-
ing impulse response and LDRW model fit (right plot).

The impulse response determines an IDC that can be interpolated and interpreted
with the same means as discussed in section 5.3. If the impulse response is fit-
ted by the LDRW model, then the MTT is determined by the parameter µ of the
model. Once the CO is known, then the volume is assessed as CO ·MTT as given in
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Eq. (2.22)5. If the impulse response between the RV and the LA is estimated, than
the LDRW model fit of the estimated curve leads to the measurement of the PBV.

A simulation test similar to that shown in the previous section was performed for
different SNR. The exponential impulse response was substituted by a LDRW-model-
like impulse response. For a SNR of 15dB (the worst encountered in practice), the
standard deviation of the MTT estimates over 1000 different noise sequences (λ equal
to 3 and MTT equal to 25s and 30s) is smaller than 1%.

Apart from the simulations, the system was tested both in vitro and in vivo. For
the in vitro validation we used the same set of measurements (Sonos 5500 ultrasound
scanner in power modulation mode) that was used for the in-vitro validation of vol-
ume assessments based on the interpolation of two curves (before and after the vol-
ume) in section 5.3.3. The measurement set-up is shown in Fig. (5.15) and Fig. (5.18)
as well as the results based on double LDRW and FPT model interpolation are shown
in Fig. (5.19) and Fig. (5.20). Fig. (6.16) shows the application of the system in vitro.
As already discussed in section 5.3.3, the increase of pressure in the first tube (before
the volume network) for higher flows, makes the amplitude of the first IDC smaller
than the second one, despite the loss of bubbles between the detection sites.

Figure 6.17: In vitro volume measurement results for different flows and vol-
umes.

The estimates of the same four volumes as in Fig. (5.19) for five different flows
going from 1L/min to 5L/min are shown in Fig. (6.17). The standard deviations with
respect with the average estimate are 2.5%, 3.1%, 0.7%, and 0.8%. Fig. (6.18) shows
the same estimates averaged over all the flows. The correlation coefficient with the
real volumes is 0.999.

5Notice that Eq. (2.22) is only applicable for measurements in the central circulation. The IDCs
must be measured where all the circulating blood is mixed together.
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Figure 6.18: Average volume measurements over all the five flows.

For the in vivo application of the system, the IDCs were measured using the same
procedure as shown in Fig. (5.24). Fig. (6.19) shows the LDRW fit of the impulse
response that is estimated from the IDCs in Fig. (5.25). The IDCs were first linearized
(see section 6.2.1) and then used as inputs of the deconvolution algorithm in Fig. (6.8)
for the impulse response estimate. Since the linearization (attenuation compensation
in Eq. (6.13)) concerns the LA IDC (there are no contrast opacified compartments
between RV and transducer), the measurement of the LV IDC was also necessary.

Figure 6.19: In vivo application of the system. The measured RV and LA
IDCs (left plot) are shown after linearization together with the
resulting impulse response and LDRW model fit (right plot).

Fig. (6.20) shows the results of the volume measurements performed on the same
group of 20 patients as shown in Fig. (5.26). With respect to the double LDRWmodel
fitting proposed in section 5.3, the use of the dilution system identification approach
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Figure 6.20: The same PBV measurements in patients as in Fig. (5.26) mak-
ing use of the LDRW model fit of the estimated impulse re-
sponse of the dilution system between the RV and the LA.

Figure 6.21: Bland-Altman plot for the comparison of the impulse response
approach with the double LDRW model fitting approach. The
agreement is very large, since the standard deviation is only
35ml and the mean value is -0.95ml.

requires the measurement of three IDCs from the RV, LA, and LV. The RV and LA
IDCs represent the input and output of the dilution system and are the input of the
deconvolution algorithm. The LV IDC is used to compensate the LA IDC for the
attenuation introduced by the opacified LV, as described in section 6.2.1. The RV is
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the first contrast-opacified target encountered by the ultrasound beam, therefore, the
attenuation does not introduce significant nonlinearities. The CO was assessed by
aortic echo-Doppler time-integration technique (see section 2.1.4).

The Bland-Altman plot in Fig. (6.21) shows the agreement of the PBV estimates
made by use of deconvolution with those measured by double LDRW model fitting
[17]. The standard deviation is 35ml (7.7%) and the mean value (impulse response
measurements minus double LDRW fit measurements) is -0.95ml. Also the in vitro
measurements in Fig. (6.17) are very close to those obtained by the double LDRW
model fitting in section 5.3.3 and the standard deviation is only 1%. As always in
this study, the shown results are not indexed (see secion 2.3). A further in vivo
investigation could compare the system with a different one. As widely accepted, the
most accurate estimates are determined by double thermodilution catheterization (see
section 2.3 and 2.4). Unfortunately, such a validation procedure is highly invasive.

In general, the advantage of using a deconvolution technique over a direct double
IDC fitting stands in the independency of the resulting impulse response from the
injection function, which does not need to be characterized and compensated as dis-
cussed in section 5.3.2. As in this chapter we propose two applications of the dilution
system identification method, more opportunities, involving not only cardiac quan-
tification, but also other applications, could be found and investigated in the future.
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Chapter 7

Automatic region of interest detection for
real-time applications

Felix qui potuit cognoscere causas (Virgilius).

Although all the studies make use of simple (usually rectangular) manually-
defined ROIs for UCA IDC measurements [2, 5, 6, 8, 181, 201], a crucial issue in the
video indicator dilution context for cardiac measurements is the automatic definition
of one or more ROIs that stay inside the cardiac walls and maximize the covered sur-
face. Therefore, this chapter concerns the automatic determination of multiple ROIs
in real time for IDC measurements. An extremely accurate contour detection is not
strictly necessary, but the segmentation must be robust to small SNR and ensure that
no tissue is included into the ROI. Signal that is backscattered by the myocardium
represents a disturb to the IDC measurement and should not be included in the ROI.
A manual delineation of the ROI does not ensure to maximize the measurement area
and slows down the operating room practice. The expansion of the ROI leads to
larger average and IDC noise reduction. As a consequence, the interpretation of the
IDC is more accurate.

Required features for a suitable image segmentation system also include a sim-
ple and efficient interface to the user in order to allow operating room applications.
The adaptability to different echo-cardiographic probes (trans-esophageal and trans-
thoracic), views, and contour shapes is necessary to use the system for different mea-
surements (e.g., CO, LV and RV EF, PBV, etc.) and pathologies (e.g., an aneurysm).
Moreover, the simultaneous detection of several contours in real time should be
achieved without the employment of expensive hardware.

Several techniques are reported in literature for contour detection. However, it is
difficult to determine a general solution that is optimal in terms of accuracy, reliabil-
ity, and computation time. The most common approaches for cardiac-chamber con-
tour detection can be divided into five main groups [41,43,202–206]: two-dimensional
filters, morphologic segmentations, model based approaches, active contours, and
level set methods.
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Two-dimensional filters include all the linear and non-linear filters typically used
for image processing [41,43]. Different cascade of high-pass filters have been tested,
but the robustness of this simple approach with echographic images is not sufficient.
The detected edges are fragmented and difficult to interpret. Special algorithms can
recombine the edge fragments [207], but they are slow and not applicable for real
time processing. Furthermore, false edges due to speckle noise1 [41, 47] should be
distinguished.

Morphologic segmentations [41, 208] apply a threshold to gray-level images and
transform them into binary ones, which are processed by binary filters. This ap-
proach seems to be not appropriate for contour detection in echographic images. The
gray-levels that define the interface blood-myocardium is not a stable and reliable
reference. As a consequence, the binary images can show several connections be-
tween different chambers or even segmentation of the chamber surface into separate
particles. The selection of an appropriate threshold to generate the binary image is a
critical point since it is difficult to define an algorithm that suits all the images [203].
A cascade of morphologic filters such as erosion and dilatation can solve some of the
problems, but requires a large increase of computations.

Model-based approaches, such as Active Appearance Models [204–206, 209–
211], first applied for face recognition, are based on Principal Components Analy-
sis of a set of training images in order to build a mean shape model. An eigenvalue
problem is solved to best adapt the model to the detected contours. When the mean
shape model can represent the chamber contour, this method shows a reliable be-
havior. However, unless some extra-constraints are defined [212], the model fitting
requires the optimization of a large set of parameters. One more disadvantage of
model-based algorithms is their limitation to a specific contour shape. Different pro-
jections, such as long and short axis views2, require different models.

Active-Contour-Model or Snake techniques minimize an energy function associ-
ated to the contour curve (usually represented by a B-Spline) [43, 202, 213]. The
total energy is defined as the sum of an internal energy and an external energy. The
internal energy depends on the characteristic of the spline curve (elasticity and stiff-
ness), while the external energy depends on the matching between the spline curve
and the image features (gray level value, gradient, etc.). Since they are iterative tech-
niques that locally deform the snake (spline), the user must define an initial contour
(set of points). Each point of the initial contour is iteratively adjusted until the to-
tal energy of the spline, which interpolates all the points, reaches a minimum. The
final result depends on the initial conditions and the weights associated to the inter-

1Speckle is the typical texture that characterizes echographic images. It is the result of echoes gen-
erated by small scatterers randomly distributed in tissues. Scattering effects that are generated outside
the main lobe of the ultrasound beam also contribute to generate speckle noise (see section 3.1).

2The long and short axis views are the longitudinal and transverse plane projections of the ventricles
respectively (see section 2.2).
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nal and external energies. Unfortunately, the solution can easily converge into local
minima. Moreover, especially with echographic images, the snake is easily attracted
by features that are due to noise, ending with wrong results. A smoothing pre-filter
can partially prevent from these errors, but reduces the gray-level gradient along the
contours.

The level set method [214], which more in general can be considered as an
optical-flow approach, is an emerging technique for tracking moving interfaces. The
combination of segmentation and tracking allows exploiting the additive information
that derives from motion. The algorithm uses a deformable contour that moves using
gradient descent and seeks for local solutions. As a consequence, a powerful initial-
ization technique is required (as for the snake technique). In fact, the final contour
is strongly dependent on its initial position. The function that defines the deformable
contour model allows the representation of any shape. The time differentiation of the
contour function leads to a Hamilton-Jacobi type equation. The solution of this equa-
tion provides the contour segmentation. The final solution is a compromise between
attraction to image features (e.g., the gradient) and contour smoothness. Computa-
tional cost, initialization, and noise sensitivity issues should be carefully considered.

For all the mentioned methods, the initialization is a critical issue and can be
hardly automated. An initial manual definition of a few reference points or the entire
contour is usually needed. The result is a difficult application of the system and a
need for the employment of trained expertises. As a consequence, these algorithms
do not suit the requirements for emergency routines and operating room applications.
Moreover, the available algorithms are either insufficiently accurate, or constrained
into a specific shape (or model), or computationally too expensive for multiple si-
multaneous contour detections in real time [206]. Therefore, in this specific context,
none of the previously mentioned algorithms seems to fit the required characteristics.

This chapter presents a new automatic cardiac-wall tracking (contour-detection)
algorithm dedicated to UCA IDC analysis. The IDCs are measured simultaneously
in different cardiac cavities (ROIs), so that the measurement of various cardiac pa-
rameters, such as CO, EF (LV and RV), and PBV, is feasible by a single UCA bolus
injection.

The computational cost of the implemented algorithm is limited, so that real-time
detection of multiple ROIs does not require expensive hardware. Furthermore, the
contour detection is projection-independent and allows the use of any cardiac view to
the cardiologist.

The input of the system is the B-mode video output of the ultrasound scanner,
which is processed in real time. Only a simple mouse click in the center of the
cavities of interest is required by the user, resulting in a system that is also suitable for
operating room applications. An off-line analysis of stored digital (AVIs) or analog
(videotapes) movies is also integrated in the current set-up.
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For IDCmeasurements the ultrasound scanner is set on fundamental mode to have
a good view of the cardiac structures, which mainly behave like linear scatterers. The
segmentation algorithm is based on a radial high-pass filter with an automatic outlier
suppression. It is general enough to be also adopted for magnetic resonance imaging
(MRI) analysis of gadolinium dilutions [31, 45].

The ROI is determined before the chamber opacification to avoid confusion be-
tween contrast and tissue. The contour tracking is performed for two cardiac cycles
before the contrast injection. The minimum-area contour is automatically determined
and used as the ROI for the following IDC measurement. The ROI is fixed inside the
cardiac chamber while the contrast is flowing. The mean gray levels in the ROIs are
processed in order to obtain the IDCs (videodensitometry). The use of the minimum-
area contour over two cardiac cycles ensures that the cardiac walls, which introduce
noise (high gray levels) into the measured IDC, are excluded from the ROI during the
measurement.

7.1 The proposed algorithm

Figure 7.1: Beam of rays from inside a left ventricle. The small squares rep-
resent the intersection between the rays and the endocardium.
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The proposed contour detection algorithm is initially designed for echographic
images, which are the most difficult to treat due to their low SNR. However, once
echographic images are successfully analyzed, the same algorithm is easily adapted
to MRI, since the image contrast and the SNR are much larger.

The echographic B-mode view of a cardiac chamber consists of a dark region
(the blood-filled inner of the chamber) surrounded by a bright structure due to the
sound that is backscattered from the cardiac-wall-to-blood interface. A chamber can
be interpreted as a two-dimensional convex object. A radial beam of rays that is
originated at any point inside the chamber intercepts the border and defines the con-
tour (see Fig. (7.1)). The presented contour detection approach is based on a radial
edge-detection filter.

An edge produces spatial high frequency components and a high-pass filter can
be used as an edge detector. Therefore, the basic principle of the proposed contour
detection algorithm is the application of a mono-dimensional high-pass filter along a
set of rays whose origin is determined by a simple mouse click, which makes the user
interface simple and friendly. The origin point of the set of rays should be central,
but not precisely in the chamber centroid. The transformation of a bi-dimensional
problem into a mono-dimensional problem reduces the computational complexity
and allows real-time applications of the system.

Figure 7.2: Impulse response of the radial filter. It is the function that is
convoluted with the pixel intensities along each defined radial
line. The distance from the radial line origin is represented by
the variable r . The impulse response is made of two rectangular
functions with the same length ∆ and amplitudes equal to 1/∆
and -1/∆. The distance between the rectangles is equal to d.
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A linear high-pass filter is applied along each ray. The impulse response consists
of two normalized rectangles. As shown in Fig. (7.2), the rectangle length and ampli-
tude are equal to ∆ and ±1/∆ respectively. One rectangle is positive while the other
one is negative. The distance between the rectangles is determined by d (d � 0). The
filter is basically a modified radial-gradient operator. If I (xk, yk) represents the pixel
intensity (gray level) along a radial line, than the discrete radial filter convolution is
implemented as given in Eq. (7.1).

ξk = 1

∆
·
∆−1∑
j=0

I
(
x(k+ j+� d2 �), y(k+ j+� d2 �)

)
+

− 1

∆
·
∆−1∑
j=0
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(
x(k− j−1−� d2 �), y(k− j−1−� d2 �)

)
(7.1)

The detected edge point along each ray corresponds to the first location (xk, yk)
where the filter output ξk surpasses a pre-defined threshold.

A set of parameters controls the filter, so that the system is adaptable to differ-
ent image features and imaging techniques. The parameters are the length ∆ and
the mutual distance d of the impulse response rectangles, the number of rays, and
the threshold. For echographic images we usually fix the number of rays and d to
360 and 2 (pixels) respectively. Typical ROI areas in echographic images (including
all possible cardiac views and chambers) go from 5000 to 50000 pixels, therefore,
360 edge points are sufficient to reconstruct the contour. If the contour is very small
(perimeter shorter than 500 pixels), then the number of edge points should be de-
creased. The choice for d is not critical. The length of the rectangle ∆ is fixed to 20
in order to detect the edges and filter out the speckle noise, which consists of spots
that cover less than 50 pixels.

The threshold can be adjusted manually. Usually, for well equalized images, a
contrast of 20 gray levels leads to the most accurate results. However, an automatic
threshold estimation is implemented too. Based on the histogram of the image, the
gray level standard deviation σ is calculated and the threshold S is determined as
given in Eq. (7.2). The logarithm is used to compress the range of σ , which for
echographic images covers a wide interval.

S= �a · ln(σ +1)� (7.2)

The value for the coefficient a is optimized over a set of 40 echographic images
and fixed to 6.7. Also the use of the threshold proposed by Otsu has been investi-
gated [203], however, the threshold defined in Eq. (7.2) suits better for this specific
application and shows a more stable behavior. In fact, differently from typical mor-
phologic applications, in this context the threshold problem regards the radial gradi-
ent rather than the absolute value of the video intensity.
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A median filter [41, 43] is applied before the proposed radial filter to remove
the spots due to speckle. The choice for a non-linear filter over a linear low-pass
filter is due to the need for removing the speckle without blurring the image. A
blurred image makes the subsequent edge detection less efficient. Instead, a median
filter enhances the sharpness of continuous contours. The implemented filter is a 5x5
8th order median filter. The pixels covered by the 5x5 kernel are ordered from the
minimum to the maximum gray-level. The pixel that corresponds to the center of the
kernel is then substituted with the 9th pixel in the ordered list (8th order median filter).
The size is chosen according to the typical size of the speckles.

A linear interpolation of the points that are detected by the radial filter (they
should be 360, one for each degree, but along some rays the edge could be unde-
tectable) defines the ROI. Unfortunately, due to the low quality of echographic im-
ages, the ROI contains several outliers (see Fig. (7.3) and Fig. (7.5)), and expands
beyond the cardiac walls. In fact, very often, not all the cardiac wall-to-blood in-
terface gives a good ultrasound reflection, and entire parts of the contour may be
completely unrecognizable. Moreover, in long-axis projections the cardiac chamber
is open through the valve (see Fig. (7.4)).

A routine is implemented to detect and correct the outliers (see Fig. (7.3)). It is
based on the assumption of continuous and smooth edges. The Cartesian coordinates
of the detected edge points are transformed into polar coordinates centered in the
origin of the rays (see Fig. (7.6)). This mono-dimensional polar plot (distance from
the origin versus angle) is processed to remove the outliers. The first derivative of the
plot is calculated and the points whose amplitude surpass a pre-determined threshold
removed. The hypothesis of bounded derivative is a consequence of the assumption
of continuous and smooth edges. After an experimental optimization process, the
threshold has been determined as to be equal to 7% of the standard deviation of
the initial polar plot (before the outlier correction). For each removal the derivative
function is updated. The process is repeated (clockwise and anticlockwise3) until all
the points satisfy the threshold condition.

Once the outliers have een removed, a new ROI is defined as the linear interpola-
tion of the remaining edge points (see Fig. (7.3)). Therefore, the removed edge points
are replaced on the intersection between the interpolation line and the rays where they
lay.

Usually the resulting ROI is too sharp (i.e., defined by many sharp angles), es-
pecially when several outliers are corrected. A more “anatomic” shape of the ROI is
obtained by low-pass filtering (smoothing) the polar plot after the correction of the
outliers. Before the contour smoothing, the ROI centroid is calculated and the polar
coordinates referred to the new origin. This operation ensures a better independency
of the smoothing filtering from the first origin-point choice.

3The derivative discontinuities may be asymmetric and must be detected in both directions.
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Figure 7.3: Schematic example of outlier correction. The outlier is replaced
by the intersection between the ray where it lay and the linear-
interpolation line of the detected edge points.

Figure 7.4: Two-chamber view with open mitral valve. No ultrasound waves
are reflected through the open valve and the resulting echo-
image shows the LA and LV as two connected cavities.
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Figure 7.5: The upper figures show the high-pass radial filter (A) and the
outlier correction (B). The external contour includes the outliers
while in the internal contour they are corrected by derivative
filtering. Figure C shows the final smoothed contour.

The adopted filter is a zero-phase low-pass filter, designed as a cascade of a causal
FIR (Finite Impulse Response) low-pass filter and a phase shifter. The DC component
of the filter impulse response is normalized to a value that is smaller than one, so that
the ROI area is slightly decreased. This ensures the cardiac walls to be not included
in the ROI. Fig. (7.5) and Fig. (7.6) show the contour detection process in Cartesian
and polar coordinates respectively.

As presented in previous literature [215] and despite the accurate contour detec-
tion that is shown by the proposed method, the addition of an active contour (snake)
optimization is tested. The initial contour is defined by the output of the previous
algorithm. The algorithm developed by Amini et al. [216] has been modified and
adapted to the radial structure of the system. The results for this implementation are
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Figure 7.6: With reference to Fig. (7.5), plot A is the polar coordinate rep-
resentation (distance from the radius origin versus angle) of the
edges that are detected by the radial high-pass filter. Plot B and
C show the effect of the outlier correction and smoothing pro-
cesses respectively.

not encouraging. The snake optimization process requires a considerable increase in
computations while the accuracy improvement is limited. Therefore, we have cho-
sen not to implement the snake optimization into the IDC analysis system. Future
research will consider alternative radial active contour optimizations.

Typically, the measurement of an IDC takes more than 20 seconds, and during
this time the cardiac walls must stay outside the ROI. Because of the cardiac wall
motion, a new ROI should be defined for each frame (wall tracking). Unfortunately,
the ROI cannot be determined after the contrast appears in the chamber because the
backscatter due to the cardiac tissue is confused with that due to the contrast (funda-
mental mode echo-analysis). Our solution is to determine the ROI before the contrast
appearance and to keep it fixed during the IDC measurement. To ensure that the my-
ocardium is never included, the minimum-area ROI is selected during two cardiac
cycles before the chamber opacification.

In conclusion, the in-vivo IDC measurement is performed in the following three
phases.

• A ROI is defined for each frame (wall tracking) during two cardiac cycles be-
fore the chamber opacification.

• The minimum-area ROI is automatically determined and fixed for the video-
densitimetry.

• The mean gray-level is calculated over the fixed ROI while the contrast bolus
is flowing.



7.2 Results 159

This algorithm is implemented in software and hardware to establish the perfor-
mance of the algorithm in a realistic environment. The software implementation is
made in Labview�, Imaq Vision�, and Matlab�. The developed software can pro-
cess AVI files as well as it can be interfaced to the video output of either an ultrasound
scanner or a videorecorder. The video interface is realized by a National Instruments
1407-PCI� frame grabber, which is controlled via Labview� and MAX� (Mea-
surement and Automation Explorer). The video grabber can interface both European
(CCIR) and American (RS-170) standards.

7.2 Results

Figure 7.7: Image a and b show the contour detection in a long-axis view
and a short-axis view of the left ventricle. Image c shows a four-
chamber view with the detection of the left and right ventricles.
Image d shows the detection of different ROIs (LV, LA, and Ao)
in a MRI frame.

The proposed contour detection algorithm is applicable to different echographic
and MRI cardiac projections as shown in Fig. (7.7). Since an absolute reference for
the contour detection evaluation does not exist, medical image segmentation algo-
rithms are usually compared to manual contour delineation, which is performed by
expertises. A set of forty echographic images and twenty magnetic resonance (MR)
images were randomly selected from clinical routine analysis of different patients
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with various cardiac pathologies4. Both automatic and manual contour detection were
used. The echographic contour detection was performed on four- and two-chamber
views of twenty-six left ventricles and ten left atria as well as on short-axis views of
four left ventricles. The MR contour detection was performed on ten four-chamber
views and ten short-axis views of left ventricles. Only for this specific validation, the
ROI area was not decreased as for indicator dilution applications.

Figure 7.8: On the left, the histogram of the percent area error between au-
tomatic and manual measurements for the echographic images.
On the right, the same histogram for the MR images.

Figure 7.9: Automatic versus manual ROI areas (measured in image pixels)
for the echographic (on the left) and the MR (on the right) im-
ages.

The error of the contour detection, which is referred to as area error, is estimated
as the percent area difference between manual and automatic contours. The area is
expressed in number of pixels. The error histograms for the echographic and the
MR images are shown in Fig. (7.8). The average error for the echographic images is
10.0% with a standard deviation equal to 2.0%, while the average error for the MR
images is 9.0% with a standard deviation of 2.2%. An error equal to 8.0% of the total
area is shown in Fig. (7.11). Fig. (7.9) shows the correlation between the manual

4All the data are provided by the Departments of Cardiology and Radiology of the Catharina Hos-
pital Eindhoven (The Netherlands).
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and the automatic area for both the echographic and the MR images. The correlation
coefficient is 0.995 and 0.998 respectively.

Figure 7.10: Bland-Altman plot of the area estimates by automatic and man-
ual contour detection. On the left are the results on echo-
graphic images while on the right are the results on MR im-
ages. The percent area error is shown together with the mean
value (MEAN) and the standard deviation (SD).

The comparison between manual and automatic contour detection is also shown
by the Bland-Altman plot in Fig. (7.10) [17]. The average area error is −3.2% (stan-
dard deviation equal to 3.4%) and −5.1% (standard deviation equal to 3.9%) for
echographic and MR images respectively. The standard deviation is small and the
modest negative bias is a positive characteristic for IDC applications. These results
show sufficient accuracy to fulfill the requirements for IDC applications.

All the echographic images were analyzed using the automatic threshold as in
Eq. (7.2) except for five images, where the threshold was manually modified by few
gray levels (� 5). In fact, the automatic threshold in Eq. (7.2) depends on the region
where the gray-level standard deviation σ is evaluated. Since σ is calculated over the
complete image, white text or dark regions around echographic images influence the
standard deviation. As a result, the automatic threshold may differ from the optimal
value by few gray levels. Future implementations of the algorithm will include an
automatic determination of the region for the evaluation of σ . The threshold for the
analysis of all the MR images, where no text is included, was fixed to 60.

The sensitivity of the contour detection with respect to the origin of the radial
filter was tested to evaluate the reproducibility of the results. The contour of the left
ventricle in Fig. (7.11) was detected for the origin point position varying over the
overlapped rectangle. The percent area error histogram is shown in Fig. (7.11). The
error mean value is 9.8% with a standard deviation equal to 2.3%.

Referring to the same image, Fig. (7.12) shows the percent area error for vertical
and horizontal displacements of the origin point with respect to the contour centroid.
We may conclude that for reasonably-central positions the algorithm is robust to ori-
gin translations.
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Figure 7.11: On the left, the original image with an overlapped rectangle
indicating the region were the central point varies to generate
the error histogram on the right. The error is represented by
the percent area error for different central point positions. In
the middle, in black, an 8% area error is shown.

Figure 7.12: Percent area error between manual and automatic contours for
central point displacements with respect to the manual ROI
centroid. The horizontal (on the left) and the vertical (on the
right) displacements are calculated along the horizontal and
the vertical lines that intercept the contour centroid.

Fig. (7.13) shows an application of the algorithm for indicator dilution analysis
in humans. A bolus of contrast agent (10ml diluted 1:100 of SonoVue�) is injected
into a peripheral vein and detected by a TEE ultrasound transducer in the central
circulation. In Fig. (7.13), a ROI is automatically determined and kept fixed in the
LV while the contrast agent is flowing. The average video intensity in the ROI is
calculated for each frame and used to build the IDC.

In order to validate the system, the use of the automatic ROI detection was com-
pared to the use of simple manual ROI definitions. Two circular ROIs, a large and a
small circle, were added for validation purpose (see Fig. (7.13)). The manual posi-
tioning of more complex ROIs is too slow and complex for real-time applications.
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The resulting IDCs from the automatic ROI (AUTO), the large circular ROI (LC)
and the small circular ROI (SC) were then fitted by a specific model as shown in
Fig. (7.13). The second part of the IDC down-slope (end of the tail) shows the recir-
culation of the contrast (rise of the contrast concentration with respect of the model
fit). Since the cardiac measurements are derived from the first passage IDC, the recir-
culation introduces an important noise component into the signal. As a consequence,
as discussed in the previous chapters, the use of a model becomes necessary to fit the
first part of the IDC and estimate the rest of the tail.

The Local Density Random Walk (LDRW) model described in section 4.2.2 is
used to derive the cardiac parameters. Therefore, the interpolation accuracy is indeed
the best parameter to evaluate the contour detection algorithm for IDCmeasurements.
The LDRW fitting was performed by use of the fitting algorithm described in sec-
tion 5.1.1.

Figure 7.13: On the upper left, a mid-esophageal three chamber view is
shown together with three different ROIs in the left ventricle.
A ROI is defined by automatic detection (AUTO) and two cir-
cular ROIs, a large (LC) and a small (SC) circle, are manually
placed. The remaining three plots show the measured IDCs
from each ROI together with the LDRW model fits.
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Figure 7.14: LDRW-fit determination coefficients for three sets of IDCs,
which are measured by the automatic ROI (AUTO), a small
circular ROI (SC), and a large circular ROI (LC).

The same validation as shown in Fig. (7.13) was performed for 12 trans-esophageal
echographic inspections after the injection of a SonoVue� contrast agent bolus.
Fig. (7.14) reports the determination coefficients (ρ2, squared correlation coefficient)
of the LDRW fits of the measured IDCs (video-intensity-versus-time curves) for the
automatic and the two circular ROIs. The average determination coefficient is 0.922
for the automatic ROI, 0.876 for the small circular ROI, and 0.821 for the large cir-
cular ROI (standard deviations equal to 0.041, 0.110, and 0.131 respectively).

The IDC recorded by the automatic ROI detection shows a more stable behav-
ior and the best average determination coefficient. When a large circle is used, the
intrusion of cardiac tissue in the ROI adds large noise components to the IDC. This
explains the smallest ρ2 for large circular ROIs. Sometimes, the use of a small ROI
shows excellent results, slightly better than those obtained by use of automatic ROI
detection. However, for low SNR images, the use of a small ROI results in very
noisy IDCs (injections 5, 10, and 11 in Fig. (7.14)), and the LDRW-fit shows a much
smaller ρ2 compared to the automatic ROI detection.
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Chapter 8

Conclusion and perspectives

Carpe diem, quam minimum credula postero (Horatius).

The assessment of CO, PBV, and EF provides valuable information for both di-
agnosis and patient monitoring. Unfortunately, some of these measurements used to
be difficult to assess and required the use of invasive techniques and hospitalization.

This thesis proposes an novel ambulatory technique for a minimally invasive
quantification of CO, PBV, and EF (RV and LV). The invasiveness issue is over-
come by using contrast echocardiography. The cardiac parameters of interest can be
assessed by a single peripheral UCA bolus injection, resulting in a simple, quick (few
minutes), and minimally invasive measurement.

A bolus of UCA is injected in a peripheral vein and detected by an ultrasound
transducer for the simultaneous measurement of several IDCs from different sites in
the central circulation. The use of small UCA doses allows a linear calibration of the
system, i.e., the relation between UCA concentration and detected acoustic (or video)
intensity is well approximated by a liner function.

The parameter estimation is performed by means of specific modelling and in-
terpretation of the IDCs. In particular, random walk models are preferred over the
others due to their accurate interpolation of the IDC and physical interpretation of
the dilution process. The CO can be calculated either by the RV IDC or by aortic
echo-Doppler time integration. Blood volumes are calculated as the product between
the CO and the MTT that the contrast bolus takes to cover the distance between dif-
ferent detection sites. The MTT is derived from the LDRW model fits of the IDCs.

Two algorithms for the LDRW model interpolation of the IDC are proposed.
They are based either on a multiple linear regression in the logarithmic domain or
on the solution of the moment equations. Both of them show accurate fits (ρ2 >

0.95), however, the multiple liner regression is preferred when contrast recirculation
is considerable.

A novel approach is proposed for EF measurements. It is based on the identifi-
cation of the ventricular dilution system, which is treated as a linear system. A re-
cursive Wiener deconvolution technique is adopted to estimate the impulse response
that characterizes the system. The EF of both left and right ventricle can be measured
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by the analysis of two IDCs from the atrium and the ventricle, which are considered
as the input and output signals of the ventricular dilution system and processed by
the Wiener deconvolution algorithm to estimate the ventricular dilution impulse re-
sponse. The estimated impulse response can be fitted by a mono-compartment model
for the EF assessment. An important achievement of this technique is the indepen-
dency on the injection function and modality. As a result, a peripheral intravenous
injection can substitute the ventricular fast injection that was required by previous
techniques.

A similar approach also allows assessing the PBV by the identification of the
dilution system between RV and LA. The MTT is derived from the parameters of the
LDRW model fit of the estimated impulse response.

CO measurements were validated in-vitro and show accurate results (ρ2 > 0.9).
However, due to the complicated calibration, the in-vivo application requires the em-
ployment of a trans-esophageal probe. A reliable set-up for an in-vivo validation
requires a comparison with thermodilution. Such a study, due to the invasiveness of
thermodilution, is complicated to arrange and is not included in this thesis.

Also the PBV measurement method was validated in-vitro. The calibration is
simpler (only the linearity of the relation between contrast concentration and mea-
sured intensity is required) and a trans-thoracic transducer is sufficient for the mea-
surement. The results show stable and reproducible volume estimates for a wide
range of flows (ρ2 > 0.99). The results obtained by using the LDRW model fit of
two IDCs (from the two measurement sites) or the LDRW model fit of the estimated
impulse response are similar. Both the LDRW and the FPT model were tested for
the measurement and show accurate results. However, a preference is given to the
LDRW model due to the MTT overestimation of the FPT model for diffused curves.
The PBV measurement was also tested in humans with promising results. However,
for a reliable validation in patients, comparison with trans-pulmonary thermodilution,
which requires a double catheterization, should be considered in the future.

The EF measurement was tested on a group of twenty patients by both the pro-
posed dilution method (using TTE) and the echographic bi-plane method with con-
trast opacification (ρ2 = 0.87). This preliminary validation proves the feasibility and
reliability of the dilution method. However, for a more accurate validation, compari-
son with MRI could be considered in the future.

This study proves that the simultaneous assessment of CO, EF (LV and RV), and
PBV by use of UCA dilution is feasible and accurate. The measurement can be per-
formed with minimal invasiveness. As a consequence, the proposed techniques may
represent a useful tool in cardiology, anaesthesiology, and intensive-care, for the si-
multaneous measurement of important diagnostic parameters, some of which cannot
be measured without the employment of very invasive techniques. Apart from the as-
sessment of the mentioned cardiac parameters, the proposed techniques open a wide
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range of possible applications, which involve both assessments of more cardiovascu-
lar parameters and clinical studies on the relations between the measured parameters.

The total circulating blood volume, for instance, could be assessed by means
of the recirculation curve fit. The idea was tested successfully in a few patients (see
Fig. (5.27)). This measurement can be used, for instance, to normalize blood volumes
and replace the indexed values (division by BSA).

Another important application of the presented techniques could aim to the as-
sessment of Regurgitant EF (REF). In fact, as the proposed UCA dilution approach
allows an easy assessment of FEF, this value could be compared to the geometric EF
assessment performed by any medical imaging technique (echography, MRI, CAT,
etc.). The difference EF−FEF represents the fraction of EF that does not contribute
to the forward flow, i.e., the REF. This parameter could be used as an indicator of the
cardiac valve condition, although it does not distinguish between mitral and aortic
valve insufficiency.

Also the regurgitant volume could be assessed. In fact, FEF = SV/Ved , where
the SV is the blood volume that is ejected forward during one cardiac cycle. Ved and
Ves can be measured by several geometric image analysis techniques. Therefore, the
regurgitant volume can be quantified as Ved −Ves −SV= Ved(1−FEF)−Ves .

Figure 8.1: Results of a preliminary study to investigate the correlation be-
tween percent EF increase and percent PBV decrease during
resynchronization therapy. The determination coefficient is 0.99.

Possible clinical studies could involve the establishment of a relation between
blood volumes and cardiac condition. A preliminary study on the relation between
EF improvement and PBV decrease during resynchronization therapy already shows
promising results. The echographic bi-plane LV EF and the PBV were measured in
four patients before bi-ventricular pacing and three months later. The results, as re-
ported in Fig. (8.1), show a clear correlation (ρ2 = 0.99) between the EF increase
(improved LV functionality) and the PBV decrease. In fact, when the LV contraction
is less efficient than that of the RV, the blood pressure in the pulmonary circulation in-
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creases until the LV and RV blood flows are balanced. The PBV expansion is a direct
consequence of the pulmonary blood pressure increase. Therefore, after ventricular
resynchronization, the improvement of the LV efficiency (EF) can be correlated to the
decrease of PBV. This is an example of the opportunities that this technique opens
for new clinical studies.

Figure 8.2: Application of the image segmentation algorithm for ventricu-
lar synchronicity evaluation. Eight rays are selected in a short
axis MRI slice for the wall displacement measurement and the
resulting time plots are shown on the left.

Also the segmentation algorithm presented in chapter 7 can be used for interesting
clinical studies. A first application, already in progress, concerns the measurement
of the LV contraction synchronicity. As shown in Fig. (8.2), the system is applied to
a short axis view. Short axis MRI is used to obtain the highest image quality (high
contrast) for a more accurate contour detection. The time resolution is 11ms. Eight
of the radial filter rays (it can be any number of rays) are selected and the distance
between the intersection ray-endocardium and the ray origin is plotted versus time
during one cardiac cycle. Different plots are recorded from different segments (rays)
and compared by a cross-correlation in order to determine the mutual delay of the
ventricular contraction. The aim of this study is to determine the temporal-spatial
distribution of the ventricular contraction, which might be used for more accurate
positioning of the pacing electrodes.

Apart from several applications for new measurements and studies, also a differ-
ent use of the same principles could be investigated. Inspired by the release-burst
imaging techniques described in section 3.3, all the theory described in this thesis
could be applied to negative (vertically flipped) IDCs. Using a continuous infusion of
contrast, an homogeneous opacification of the circulatory system could be obtained.
Therefore, if a destructive ultrasound burst with a high MI (MI> 1) is transmitted, a
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fraction of bubbles is destroyed and a negative IDC could be obtained from acoustic
or video intensity measurements in specific ROIs.

In order to test the idea, the same fluid-dynamic system that is shown in Fig. (5.15)
was closed to allow recirculation and filled with contrast (one vial of SonoVue�).
Then an ultrasound burst was transmitted to the tubes. As a result, a negative IDC
could be measured from the ROI in the second tube after the passage of the negative
bolus through the network. Fig. (8.3) shows the LDRW fit of an inverted IDC. Several
problems concerning this approach arose. First of all, the dose should be quantified
in terms of energy of the ultrasound burst and related to the amount of destroyed
bubbles. This procedure seems to be complicated, resulting in an extremely difficult
calibration of the system.

Figure 8.3: LDRW model fit of a negative IDC.

Moreover, the continuous imaging, despite the low MI, produces bubble disrup-
tion, as evident from the IDC baseline decay that is shown in Fig. (8.4). It is a
monotonic decrease of the backscattered signal due to bubble clearance, which seems
likely to be related to the insonation at 25 frames per second. A significant problem
is also represented by the SNR, which is lower than that obtained by UCA bolus in-
jections. In fact, while destructive bursts are very efficient in the myocardium and
are exploited by replenishment techniques for flow quantification, the same does not
apply to the ventricle, where only a small fraction of bubbles is destroyed.

As for the cardiac image segmentation algorithm, also the proposed indicator
dilution techniques are not limited to echographic applications. In fact, apart from
the calibration issues, which are strictly related to contrast echocardiography, the
same indicator dilution principles can be applied to any contrast imaging techniques,
such as PET or MRI (gadolinium dilution).
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Figure 8.4: Negative IDC. A monotone decrease of the ultrasound backscat-
tered intensity is evident.

In conclusion, new contrast imaging technologies can be exploited with specific
signal processing and modelling for the measurement of several clinical diagnostic
parameters. In this context, the contribution of this thesis consists in the development
and validation of several techniques for cardiac and cardiovascular measurements
based on contrast echocardiography. Consequently, this thesis also opens the way
to a large number of clinical applications and studies based on the same principles.
The ultimate goal, which is the major motivation of any biomedical research, is the
realization of efficient instruments for a better understanding and treatment of human
diseases.
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Appendix A

Multiple linear regression

The multiple (or multivariate) linear regression is used in order to solve with a Least
Square Estimation (LSE) the linear system given in Eq. (A.1), where Y is the vector
of the measured values, X1...X p are the vectors of the stochastic variables that can
influence the process, and p0...pp are the parameters to optimize.

Y = p0+ p1X1+ p2X2+ ...+ ppX p (A.1)

The LSE is the search of the absolute minimum of the squared error ε2, which is
defined as in Eq. (A.2).

ε2
(
P
) = ∥∥Y − (p0+ p1X1+ p2X2+ ...+ ppX p

)∥∥
2
= (A.2)

=
n∑
i=1

(
yi −

(
p0+ p1xi1+ p2xi2+ ...+ ppxip

))2

By defining the matrix [X ]=

⎡⎢⎢⎢⎣
1 x11 x12 · · · x1p
1 x21 x22 · · · x2p
...

...
...

. . .
...

1 xn1 xn1 · · · xnp

⎤⎥⎥⎥⎦ ,

ε2
(
P
)
can be expressed as given in Eq. (A.3).

ε2
(
P
)= (Y − [X ] P

)t (
Y − [X ] P

)= Y tY −2Pt [X ]t Y + Pt [X ]t [X ] P (A.3)

The usual way of proceeding is by differentiating ε2
(
P
)
with respect to P and

imposing the resulting derivative to be equal to zero [217]. An alternative way
[190], not involving calculus, is to notice that if P ′ is any value of P satisfying
[X ]t [X ] P ′ = [X ]t Y , then1 ε2

(
P
)≤ ε2

(
P ′) for all P . If there were two different so-

lutions P ′
(1) and P

′
(2), then we would have [X ]

t [X ]
(
P ′

(1) − P ′
(2)

)= 0, which implies

1This result can be established in the following steps. First, from the definition of ε2 we have
ε2
(
P
)− ε2

(
P ′)= Pt [X ]t [X ] P−2Pt [X ]t Y +2

(
P ′)t [X ]t Y − (P ′)t [X ]t [X ] P ′.

Then, substituting [X ]t Y with [X ]t [X ] P ′ we obtain ε2
(
P
) − ε2

(
P ′) = Pt [X ]t [X ] P −

2Pt [X ]t [X ] P ′ + 2
(
P ′)t [X ]t [X ] P ′ = (

[X ]
(
P− P ′))t ([X ](P− P ′)) ≥ 0, since it is a sum of

squares. This establishes the result.
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that the determinant of
(
[X ]t [X ]

)
is equal to zero. Thus, if [X ]t [X ] is non-singular

(det
(
[X ]t [X ]

) �= 0), then P ′ = ([X ]t [X ])−1 [X ]t Y is the unique least squares esti-
mator of P .
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Appendix B

Derivation of the LDRWmodel from a
binomial step distribution

Referring to Fig. (4.12), we focus on one particle that is assumed to move stepwise
(discrete motion). It is considered able to make a step ahead with probability p and a
step backwards with probability q . The length of the step is fixed and equal to s, and
it is executed with time period T .

Therefore, after n steps (k ahead and n− k backwards) the position X (nT ) (with
X random variable) is given as in Eq. (B-1).

X (nT ) = ks− (n− k)s = ms (B-1)

m = 2k−n

Therefore, the probability of finding the particle at position x = ms is given by
the binomial model as in Eq. (B-2).

P{X (nT ) = ms)} =
(
n

k

)
pkqn−k (B-2)

The expected value E{X (nT )} = 0 and the variance Var{X (nT )} is equal to
E{X2(nT )} = ns2.

The simplest case is p= q = 1/2. Notice that this assumption implies a diffusion
without drift, i.e., no flow is present.

Theorem B-1 (Central Limit Theorem (CLT)) Given a set X1, X2, ..., Xn of inde-
pendent, identically-distributed stochastic variables, suppose each Xi has mean µ

and variance σ 2 < ∞.

Defined Yn =
n∑
i=1

Xi , then lim
n→∞

Yn−nµ
σ
√
n
has a Gaussian distribution with µ = 0 and

σ 2 = 1.

�
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For a number of steps n that is large enough, we can express the binomial model
by means of the Central Limit Theorem (CLT, see Theorem B-1), since the steps
are independent from each other and identically distributed (X (nT ) is aMarkov pro-
cess). For a single step Xi the expected value E{Xi } = 0 and the variance Var{Xi } =
E{X2

i }= s2(1/2)+(−s)2(1/2)= s2. Hence, from the CLT it derives that P{X (nT ) =
ms)}, referred to as the discrete process X (ms,nT ), is given as in Eq. (B-3).

P{X (nT ) = ms)} � X (ms,nT ) = 1√
2πns2

e− (ms)2

2ns2 (B-3)

In order to transform the discrete process given in Eq. (B-3) into a continuous one,
we can apply a limit operation for n → ∞, which justifies the previous application of
the CLT or, equivalently, we can consider the continuous time domain t = lim

T→0
nT .

With x =ms and assuming lim
T→0

(s2/T )=α, we obtain theWiener processW (x, t)

as given in Eq. (B-4)1.

W (x, t) = 1√
2παt

e− x2
2αt (B-4)

It is interesting to notice that the Wiener process in Eq. (B-4) is solution of the
mono-dimensional diffusion equation without drift (diffusion without convection) for
a unit mass injected and unitary section of the tube (see Eq. (C-8)). Therefore, α

equals the diffusion coefficient D multiplied by two (see section 4.2.2).
This result is obtained with the hypothesis p= q = 1/2, i.e., when flow is absent.

To introduce a carrier flow, we can assume p > q (probability of a step ahead larger
than the probability of a step backwards).

The Random Walk process with p �= q is known as Generalized Random Walk.
For one step E{Xi } = s(p−q) and Var{Xi } = E{X2

i }−E2{Xi } = s2−(s(p−q))2 =
4pqs2. Therefore, if we apply the CLT, after n steps we have that the process
X (ms,nT ) can be approximated by a Gaussian distribution with expected value
E{X (nT )} = ns(p−q) and variance Var{X (nT )} = 4npqs2 as given in Eq. (B-5).

P {X (nT ) = ms} � X (ms,nT ) = 1√
8πnpqs2

e
− [ms−n(p−q)s]2

8npqs2 (B-5)

1The limit operation that defines α must be interpreted as a statistical condition to keep the same
description of the process (finite variance) when T and s become very small [185]. Analytical and
physical interpretations in the continuous domain are meaningless.
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Therefore, for T → 0 (or equivalently n → ∞) and with the substitutions given
in Eq. (B-6), we obtain the same process X (x, t) as given in Eq. (4.21).

t = nT (B-6)

α = 4pqs2

T
x = ms

u = (p−q)s

T

Eq. (4.25) is derived from Eq. (4.21) as explained in section 4.2.2. From Eq. (4.21)
it results that α is again equal to 2D. The linear velocity of the carrier is now defined
as u = (p−q)s/T .
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Appendix C

LDRWmodel and diffusion equation

The transport of a tracer by means of a carrier is due to two contributions: the diffu-
sion process and the convection process.

The the diffusion process represents the diffusion of a tracer in a carrier due to
different concentrations of the tracer itself. We are considering a random walk of
particles whose result is an average movement from regions of higher concentration
to regions of lower concentration. The mathematical formulation is given by the First
Fick Equation as in Eq. (C-1).

→
J di f f = −D∇C (C-1)

C = concentration of the tracer

D = diffusion coefficient
→
J di f f = diffusion flux

The convection process is the contribution to the transportation given by the mo-
tion of the tracer. It is modelled as given in Eq. (C-2).

→
J conv = C

→
u (C-2)

C = concentration of the tracer
→
u = carrier velocity

→
J conv = convection flux

Eq. (C-2) is nothing else than a mathematical expression for the translation of the
Gaussian distribution as shown in Fig. (4.12). Combining Eq. (C-1) and Eq. (C-2) we

obtain the total tracer flux
→
J tot as given in Eq. (C-3), where

→
v is the tracer velocity.

→
J tot � C

→
v = C

→
u −D∇C (C-3)
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The diffusion coefficient D (usually expressed in cm2 · s−1) depends on the con-
centration of the tracer as well as on the specific flow. For instance, the blood flow
through large vessels during the main part of the cardiac cycle is a laminar flow with
Taylor diffusion1 and longitudinal diffusion coefficient DL = (r2u2)/(192Dm) (u is
the linear velocity in the center of the vessel, r is the radius of the vessel, and Dm is
the molecular diffusion coefficient), while in the remaining part of the cardiac cycle
it is a turbulent flow and DL is linearly related to the Reynolds number2 [11].

The measure of the relative contribution of convection and diffusion with respect
to the tracer transport is known as Peclet number and it is related to the parameters
of the LDRW model [11, 16]. In fact, as explained in section 4.2.2, the parameter λ

not only defines the skewness of the curve, but also is directly related to the Peclet
number.

Another equation of the hydrodynamics that is related to the dispersion process
is the continuity equation, which states the conservation of the mass. Eq. (C-4) rep-
resents its formulation as given by Menzel.

∂C

∂t
= −∇ ·C→

v + Ra,v − Rd,v (C-4)

C = concentration of the tracer
→
v = tracer velocity

Ra,v = rate of appearence

Rd,v = rate of disappearence

The terms Ra,v and Rd,v represent respectively the sources (∂C/∂t) and sinks
(−∂C/∂t) of the tracer. In practice, Eq. (C-4) states that the rate of change of con-
centration at any point is equal to the sum of changes inducted by physical and chem-
ical means. Physically, the concentration is regulated by the tracer transport (i.e.,
by convection and diffusion), which is represented by the term ∇ ·C→

v . Chemically,
the concentration is regulated by the difference between the rates of production and
degradation of tracer, which is represented by the term (Ra,v − Rd,v).

Substituting C
→
v given by Eq. (C-3) into Eq. (C-4) and excluding the presence of

sinks and sources we obtain Eq. (C-5).

∂C

∂t
= −∇ ·

(
C

→
u −D∇C

)
= D∇2C−∇ ·C→

u = D∇2C−(
→
u ·∇C+C∇ ·→

u ) (C-5)

1Taylor diffusion is the diffusion process under laminar flow conditions.
2The Reynolds number [47,218] is a non-dimensional parameter adopted to define the transition of a

fluid from laminar- to turbulent-flow condition. Reynolds (1883) introduced this parameter by a specific
experiment. A fluid with viscosity µ f and density ρ is made flow with linear velocity u into a circular
pipe having radius r (circular Poiseuille flow). The Reynolds number is given as Re = 2uρr/µ f . The
critical value 2000 determines the transition from laminar to turbulent flow.
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Assuming the fluid to be incompressible, we have that ∇ ·→
u = 0 [16]. Therefore,

Eq. (C-5) can be written as given in Eq. (C-6).

∂C

∂t
= D∇2C−→

u ·∇C (C-6)

To consider sources and sinks, the additional term Ra,v − Rd,v must be included.
Eq. (C-6) is the formulation of the diffusion with drift equation or equation of con-
vective diffusion [16].

For a mono-dimensional model (along the X axis) the diffusion equation can be
written as given in Eq. (C-7) [10, 11], which is the mono-dimensional version of
Eq. (C-6).

∂C(x, t)

∂t
= D

∂2C(x, t)

∂x2
−u

∂C(x, t)

∂x
(C-7)

This equation describes the process that is modelled in Fig. (4.12). It is based on
the same assumption previously stated of Brownian motion of the particles that fol-
low a random walk motion. The presence of the term −u(∂C(x, t)/∂x) is due to the
convection transport and, therefore, to the flow of the carrier. Eq. (C-7) can be sim-
plified by means of a change of reference coordinates in order to observe the system
moving at the same velocity u of the carrier fluid. Therefore, after the substitution
x ′ = x−ut , Eq. (C-7) becomes the classical mono-dimensional diffusion equation as
given in Eq. (C-8).

∂C(x ′, t)
∂t

= D
∂2C(x ′, t)

∂x ′2 (C-8)

With the initial conditions as given in Eq. (C-9) and Eq. (C-10)3, where A is the
mean sectional area of the tube and u0 (x) is a Dirac impulse that represents the fast
injection of the tracer bolus (see also Fig. (4.12)), the solution of Eq. (C-8) is given as
in Eq. (C-11) [16], which is a Gaussian (normal) distribution whose variance is equal
to 2Dt .

C (x,0) =
(m
A

)
u0 (x) (C-9)

m = A

∞∫
−∞

C (x, t)dx (C-10)

C(x ′, t) = m

A
√
4πDt

e− x ′2
4Dt (C-11)

In the original fixed reference coordinates (i.e., x instead of x ′), Eq. (C-11) is
given as in Eq. (C-12), which is a solution of Eq. (C-7).

C(x, t) = m

A
√
4πDt

e− (x−ut)2
4Dt (C-12)

3Notice that the defined initial conditions remain valid for both x and x ′.
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With the substitution 2D = α, Eq. (C-12) is equal to (m/A)W (x, t) as from
Eq. (4.21), therefore, Eq. (4.25) can be obtained with the same procedure as shown
for Eq. (4.21) in section 4.2.2.
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Appendix D

LDRWmodel time integration

As from Eq. (5.11) and neglecting the coefficient A, the LDRW model can be ex-
pressed as given in Eq. (D-1).

C(t) = 1√
2πK 2t

e− (µ−t)2
2K2 t (D-1)

In fact, for K 2 = 2D/v2 and µ = x0/v Eq. (D-1) becomes the Wiener process as
given in Eq. (4.21), which, as discussed in section 4.2.2, is equal to Eq. (4.25) (previa
a few substitutions). In this appendix, the integral of C(t) (refer to Eq. (D-1)) in the
interval (0,∞) is proven to be equal to 1. The proof is divided in five steps, which
prove the following five equations (i = √−1 and x , y, and ξ ∈ R).

Step 1
+∞∫
−∞

e−y2 · eixy dy = √
π e

−x2
4 (D-2)

Step 2
+∞∫
−∞

e−t y2 · eixy dy =
√

π

t
e

−x2
4t , ∀t > 0 (D-3)

Step 3
+∞∫
−∞

1

ξ 2+b2
eixξ dξ = π

b
e−bx , ∀b > 0 (D-4)

Step 4

b

π

+∞∫
0

1√
t
e
b2
t ( x

2b−t)2 dt = 1, b, t ∈ R
+ (D-5)
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Step 5
+∞∫
−∞

1√
2πK 2t

e− (µ−t)2
2K2 t dt = 1, K ,µ ∈ R

+ (D-6)

In the following, each step is proven.

Proof of step 1. We define

f (x) =
+∞∫
−∞

e−y2 · eixy dy.

In order to calculate the derivative f ′(t), we notice that

d

dx

(
e−y2 · eixy

)
= iye−y2eixy

and

| d
dx

(
e−y2 · eixy

)
| = |y| e−y2 .

Therefore, the integral of the absolute value converges and the derivation can
be performed under the integration operator.

f ′(x) =
+∞∫
−∞

d

dx

(
e−y2 · eixy

)
dy = i

+∞∫
−∞

ye−y2 · eixy dy.

f ′(x) can be integrated per parts as follows.

f ′(x) = − i

2

+∞∫
−∞

eixy de−y2 =
[
− i

2
eixy · e−y2

]+∞

−∞
+ i

2

+∞∫
−∞

e−y2 deixy =

= − x

2

+∞∫
−∞

e−y2 · eixy dy = − x

2
f (x).

As a result, f (x) is solution of the differential equation f ′(x) = − x
2 f (x) and

can be expressed as

f (x) = f (0) e
−

x∫
−∞

ξ
2 dξ = f (0) e

−x2
4 .
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f (0) is equal to the well known integral1

f (0) =
+∞∫
−∞

e−y2 dy = √
π .

As a result, f (x) = √
π e

−x2
4 , which proves Eq. (D-2).

Proof of step 2. Eq. (D-3) can be proven by the variable substitution
√
t y = ξ (so

that dy = dξ/
√
t) and the application of Eq. (D-2) as follows.

+∞∫
−∞

e−t y2 · eixy dy =
+∞∫
−∞

e−ξ2 · e ixξ√
t
1√
t
dξ =

√
π

t
e

−x2
4t .

Proof of step 3. Eq. (D-4) can be proven by use of the residual integration theory
[219]. According to this theory, if g(z) is a rational function of z (z ∈ C), which
is real and with no poles on the real axis, and such that |g(z)| = O(1/|z|) for
|z| → ∞, then, if z j (with j = [1..n]) are the poles of g(z) for �[z]> 0,

+∞∫
−∞

g(ξ) eixξ dξ = 2π i
n∑
j=1

Res
[
g(z) eixz

]
z=z j , x > 0.

1A solution of this integral is shown. f (0) is equal to the integral of 2 e−y2 between y = 0 and
y = +∞. We can notice that (x , y, and ξ ∈ R)

∫∫
R
2+
e−
(
x2+y2

)
dxdy =

+∞∫
0

e−x2 dx
+∞∫
0

e−y2 dy =
⎛⎝+∞∫

0

e−ξ2 dξ

⎞⎠2 .
Moreover, passing into polar coordinate (r,θ ), we have

∫∫
R
2+
e−
(
x2+y2

)
dxdy =

π
2∫
0

dθ

+∞∫
0

e−r2r dr = π

4
.

Therefore,
+∞∫
−∞

e−y2 dy = 2

+∞∫
0

e−y2 dy = 2

√
π

4
= √

π .
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We define g(z) = 1/[(z− ib)(z+ ib)]. If b > 0, the only pole for �[z]> 0 is a
first order pole in z = ib. The related residual is equal to lim

z→ib
[g(z)(z− ib)]=

(−ie−bx)/(2b). As a consequence,
+∞∫
−∞

1

ξ 2+b2
eixξ dξ = 2π i

(−ie−bx

2b

)
= π

b
e−bx b > 0,

and Eq. (D-4) is proven.

Proof of step 4. We notice that

1

ξ 2+b2
=

+∞∫
0

e−t(ξ2+b2) dt =
[ −1
ξ 2+b2

e−t(ξ2+b2)
]t=∞

t=0
.

Therefore, Eq. (D-4) can be written as follows.
+∞∫
−∞

⎛⎝+∞∫
0

e−t(ξ2+b2) dt

⎞⎠ eixξ dξ = π

b
e−bx .

We introduce a theorem.

Theorem D-1 (Fubini’s theorem) Let g(x, y) be a continuous function on the
rectangular region R: a ≤ x ≤ b and c ≤ y ≤ d. Then∫∫

R
g(x, y) dxdy =

d∫
c

⎛⎝ b∫
a

g(x, y) dx

⎞⎠dy =
b∫
a

⎛⎝ d∫
c

g(x, y) dy

⎞⎠dx.
�

According to Theorem D-1, we can invert the order of integration. Therefore,
applying Eq. (D-3), we obtain

+∞∫
0

e−tb2
+∞∫
−∞

e−tξ2 eixξ dξdt =
+∞∫
0

√
π

t
e

−x2
4t e−tb2 dt = π

b
e−bx .

After rearranging the terms, Eq. (D-5) is derived as follows.

1= b

π

+∞∫
0

1√
t
e
(
bx−tb2− x2

4t

)
dt = b

π

+∞∫
0

1√
t
e
b2
t ( x

2b−t)2 dt .

Proof of step 5. Eq. (D-5) is directly derived from Eq. (D-5) with the substitutions
x/(2b) = µ and 1/b2 = 2K 2.
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