576 research outputs found

    Nuclear neutrino energy spectra in high temperature astrophysical environments

    Full text link
    Astrophysical environments that reach temperatures greater than \sim 100 keV can have significant neutrino energy loss via both plasma processes and nuclear weak interactions. We find that nuclear processes likely produce the highest-energy neutrinos. Among the important weak nuclear interactions are both charged current channels (electron capture/emission and positron capture/emission) and neutral current channels (de-excitation of nuclei via neutrino pair emission). We show that in order to make a realistic prediction of the nuclear neutrino spectrum, one must take nuclear structure into account; in some cases, the most important transitions may involve excited states, possibly in both parent and daughter nuclei. We find that the standard technique of producing a neutrino energy spectrum by using a single transition with a Q-value and matrix element chosen to fit published neutrino production rates and energy losses will not accurately capture important spectral features.Comment: 11 pages, 17 figure

    Neutrino Pair Emission from Hot Nuclei During Stellar Collapse

    Full text link
    We present shell-model calculations showing that residual interaction-induced configuration mixing enhances the rate of neutral current de-excitation of thermally excited nuclei into neutrino-antineutrino pairs. Though our calculations reinforce the conclusions of previous studies that this process is the dominant source of neutrino pairs near the onset of neutrino trapping during stellar collapse, our shell-model result has the effect of increasing the energy of these pairs, possibly altering their role in entropy transport in supernovae.Comment: 9 pages, 8 figure

    Modification of the Brink-Axel Hypothesis for High Temperature Nuclear Weak Interactions

    Full text link
    We present shell model calculations of electron capture strength distributions in A=28 nuclei and computations of the corresponding capture rates in supernova core conditions. We find that in these nuclei the Brink-Axel hypothesis for the distribution of Gamow-Teller strength fails at low and moderate initial excitation energy, but may be a valid tool at high excitation. The redistribution of GT strength at high initial excitation may affect capture rates during collapse. If these trends which we have found in lighter nuclei also apply for the heavier nuclei which provide the principal channels for neutronization during stellar collapse, then there could be two implications for supernova core electron capture physics. First, a modified Brink-Axel hypothesis could be a valid approximation for use in collapse codes. Second, the electron capture strength may be moved down significantly in transition energy, which would likely have the effect of increasing the overall electron capture rate during stellar collapse.Comment: 15 pages, 19 figure

    VIRIS: A Visual-Infrared Imaging System for the Lick Observatory 1-M Telescope

    Get PDF
    We describe a system in use at the Lick Observatory 1-m Nickel telescope for near-simultaneous imaging at optical and near-infrared wavelengths. The combined availability of a CCD and a NICMOS-3 camera makes the system well-suited for photometric monitoring from 0.5-2.2 microns of a variety of astrophysical objects. Our science program thus far has concentrated on studying variability trends in young stellar objects.Comment: 11 pages LaTex, 3 Postscript figure, Pub. Astr. Soc. Pac. 1998, in pres

    Structural disorder, magnetism, and electrical and thermoelectric properties of pyrochlore Nd2Ru2O7

    Full text link
    Polycrystalline Nd2Ru2O7 samples have been prepared and examined using a combination of structural, magnetic, and electrical and thermal transport studies. Analysis of synchrotron X-ray and neutron diffraction patterns suggests some site disorder on the A-site in the pyrochlore sublattice: Ru substitutes on the Nd-site up to 7.0(3)%, regardless of the different preparative conditions explored. Intrinsic magnetic and electrical transport properties have been measured. Ru 4d spins order antiferromagnetically at 143 K as seen both in susceptibility and specific heat, and there is a corresponding change in the electrical resistivity behaviour. A second antiferromagnetic ordering transition seen below 10 K is attributed to ordering of Nd 4f spins. Nd2Ru2O7 is an electrical insulator, and this behaviour is believed to be independent of the Ru-antisite disorder on the Nd site. The electrical properties of Nd2Ru2O7 are presented in the light of data published on all A2Ru2O7 pyrochlores, and we emphasize the special structural role that Bi3+ ions on the A-site play in driving metallic behaviour. High-temperature thermoelectric properties have also been measured. When considered in the context of known thermoelectric materials with useful figures-of-merit, it is clear that Nd2Ru2O7 has excessively high electrical resistivity which prevents it from being an effective thermoelectric. A method for screening candidate thermoelectrics is suggested.Comment: 19 pages, 10 figure

    Significance of Keratinized Mucosa in Maintenance of Dental Implants With Different Surfaces

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142329/1/jper1410.pd

    Survival of dental implants in patients with oral cancer treated by surgery and radiotherapy: a retrospective study

    Get PDF
    BACKGROUND: The aim of this retrospective study was to evaluate the survival of dental implants placed after ablative surgery, in patients affected by oral cancer treated with or without radiotherapy. METHODS: We collected data for 34 subjects (22 females, 12 males; mean age: 51 ± 19) with malignant oral tumors who had been treated with ablative surgery and received dental implant rehabilitation between 2007 and 2012. Postoperative radiation therapy (less than 50 Gy) was delivered before implant placement in 12 patients. A total of 144 titanium implants were placed, at a minimum interval of 12 months, in irradiated and non-irradiated residual bone. RESULTS: Implant loss was dependent on the position and location of the implants (P = 0.05-0.1). Moreover, implant survival was dependent on whether the patient had received radiotherapy. This result was highly statistically significant (P < 0.01). Whether the implant was loaded is another highly significant (P < 0.01) factor determinin
    corecore