25 research outputs found

    The Genetic Aspects of Behçet’s Disease: Role of Cytokine Genes Polymorphisms

    Get PDF
    Behçet’s disease (BD) is a complex, multisystemic inflammatory disorder characterized by recurrent oral aphthous ulcers, ocular symptoms, skin lesions, and genital ulcerations. The etiology of BD is not yet clear though various factors including environmental, genetic and immunological ones have been implicated. Genetic predisposition is a major factor in disease susceptibility and multiple host genetic factors have been suggested to be involved in the development of BD. In addition to the positive association of HLAB*51, recent studies report additional independent associations in the non HLA loci. Single nucleotide polymorphisms (SNPs) in various genes including cytokines have been implicated in susceptibility to BD. However, the results are inconsistent and variation are found in several ethnic populations. Therefore, further genetic studies on BD patients of different ethnicity and genes associated with immunity are expected to elucidate BD pathogenesis and will contribute to the development of more targeted therapies and biomarkers

    The Protein Tyrosine Phosphatase Non-Receptor Type 22 (PTPN22) Gene Polymorphism and Susceptibility to Autoimmune Diseases

    Get PDF
    The protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene located on chromosomes 1p 13.3–13 encodes a lymphoid-specific tyrosine phosphatase (Lyp) which is involved in autoimmunity by preventing spontaneous T-cell activation and T-cell development and inactivating T-cell receptor-associated kinases and their substrates. Several single nucleotide polymorphisms (SNPs) have been identified in PTPN22, but only one PTPN22 C1858T has been intensively studied in relation to autoimmune diseases. The PTPN22 C1858T functional polymorphism is a strong non-HLA risk factor for several autoimmune diseases and considered to play an important role in etiology of diseases due to significant production of autoantibodies. However, available literature on PTPN22 C1858T polymorphism and autoimmune diseases shows inconsistencies and ethnic variations. Therefore, further genetic studies on patients suffering from various autoimmune diseases from different ethnicities and PTPN22 gene polymorphisms are expected to help better understand the pathogenesis and will contribute to the development of more targeted therapies and biomarkers

    TNF-α, TNF-β and IL-10 gene polymorphism and association with oral lichen planus risk in Saudi patients

    Get PDF
    Objectives Oral lichen planus (OLP) is a chronic inflammatory oral mucosal disease. Cytokines play an important role in the pathogenesis and disease progression of OLP. Various reports have implicated cytokine gene polymorphisms in susceptibility to develop some immune mediated conditions including OLP. The purpose of this study was to investigate the association of tumor necrosis factor (TNF)-α, TNF-β and interleukin (IL)-10 gene polymorphisms with the OLP risk. Material and Methods Forty two unrelated patients with OLP and 211 healthy volunteers were genotyped for TNF-α (-308 G/A), TNF-β (+252A/G), IL-10 (-1082G/A), IL-10 (-819C/T), and IL-10 (-592C/A) polymorphisms. Results The frequencies of allele A and genotype GA of TNF-α (-308G/A) were significantly higher while allele G and GG genotypes were lower in OLP patients as compared to the controls (P;0.05). However, haplotype ATA extracted from 1082G/A, -819C/T, -592C/A polymorphisms of IL-10 were more prevalent in OLP patients when compared to controls indicating its possible association with OLP susceptibility. Conclusion It is concluded that TNF-α (-308G/A), TNF-β (+252A/G) and IL-10 (-1082G/A, -819C/T and -592C/A) polymorphisms are associated with the susceptibility of OLP, thus giving additional support for the genetic basis of this disease

    Inflammatory Bowel Disease: The Association of Inflammatory Cytokine Gene Polymorphisms

    Get PDF
    The frequencies of alleles and genotypes of TNF-α, TNF-β, and IL-10 genes were examined in Saudi subjects including IBD patients (UC and CD) and matched controls. Venous blood samples were collected from IBD patients and healthy control subjects, and genomic DNA was extracted using commercially available kit (Qiagen, CA, USA). In order to detect TNF-α (-308G/A), TNF-β (+252A/G), IL-10 (-1082G/A), (-819C/T), and (-592C/A) polymorphisms, the TNF-α, TNF-β, and IL-10 genes were amplified using an amplification refractory mutation systems PCR methodology. Analysis of data showed that the frequencies of alleles and genotype of TNF-α (-308G/A), TNF-β (+252A/G), and IL-10 (-1082G/A), (-819C/T), and (-592C/A) polymorphisms differ between IBD patients and control subjects. Our study clearly indicated that the TNF-α (-308G/A), TNF-β (+252A/G), and IL-10 (-1082 G/A) polymorphisms are associated significantly with the risk of IBD susceptibility while other two, IL-10-819C/T and IL-10-592C/A, polymorphisms are not associated with IBD in Saudi population. However, well-designed epidemiological as well as genetic association studies with large sample size among different ethnicities should be performed in order to have better understanding of this relationship

    Molecular cloning and sequencing of rabbit presenilin-1 cDNA fragment.

    No full text
    Molecular cloning and sequencing of a cDNA encoding rabbit presenilin-1 (Ps1) fragment was performed by reverse transcription polymerase chain reaction (RT-PCR) using primers: 5'-GGA TGA GCA GCT AAT CTA TAC C-3' and 5'-TCC ATT CAG GGA GGT ACT TGA TA-3'. The cDNA fragment revealed 402 nucleotides. The sequence was well conserved and found to be 91, 90, 88, 87 and 78% homologous to that of human, lemur, rat, mouse and chicken, respectively. The cDNA translated into a 130 amino-acid protein fragment. The deduced amino-acid sequence was also well conserved in various species and exhibited 98% similarities with those of rat, lemur and human homologues. However, differences were noticed at residues 145, 168 and 212. This cDNA fragment is quite significant because it is the most conserved portion of Ps1 in various animals and encodes four transmembrane regions (TM2, 3, 4, 5) as defined in human Ps1. Moreover, it includes more than 50% of the sites at which substitutions have been reported in familial Alzheimer's disease (FAD). Therefore, it is suggested that the rabbit can be used as an experimental model for future studies on Ps1 and its physiological functions to work out possible pathways leading to FAD linked neurodegeneration

    The role of TNF-α and TNF-β gene polymorphism in the pathogenesis of Rheumatoid Arthritis

    No full text
    Rheumatoid arthritis (RA) is a chronic systemic inflammatory disorder of unknown etiology that affects the synovial membrane of multiple joints. The clinical presentation of RA may vary from mild to severe with excessive erosions of periarticular bone leading to the loss of functional capacity. Both genetic and environmental factors are important in the development of this disorder. The genetic contribution to susceptibility for RA is underlined by a three-to four-fold higher concordance percentage for clinically expressed disease in monozygotic twins compared to dizygotic twins. The severity and long term outcome of RA have also been related to various genetic factors. Tumor necrosis factor (TNF), a pro-inflammatory cytokine, is involved in the pathogenesis of a variety of autoimmune disorders, including RA. A large number of studies have been undertaken to determine the role of TNF-α promoter polymorphisms in the pathogenesis of RA. On the other hand few attempts have been made to identify the association between TNF-α (lymphotoxin-alfa) polymorphism and RA. In this narrative review of published literature, an attempt has been made to determine the association between TNF-α promoter polymorphisms at positions –308, –238, –489, –857, –863 and TNF-β at +252 with respect to susceptibility to and severity of RA, as well as response to drug therapy. In spite of intra-and inter-ethnic variations, analysis of data suggests a significant role of TNF-α/TNF-β polymorphisms in determining the susceptibility/severity of RA and responsiveness to anti-TNF drug therapy. The TNF gene polymorphisms may be an interesting target for novel strategies to prevent RA and/or in its early treatment. Further studies using larger samples are needed to pinpoint the regulatory polymorphisms or haplotypes and their effects on the development of certain manifestations in RA
    corecore